BayesianSDF {BayesianFactorZoo}R Documentation

Bayesian estimation of Linear SDF (B-SDF)

Description

This function provides the Bayesian estimates of factors' risk prices. The estimates with the flat prior are given by Definitions 1 and 2 in Bryzgalova et al. (2023). The estimates with the normal prior are used in Table I (see the footnote of Table I).

Usage

BayesianSDF(
  f,
  R,
  sim_length = 10000,
  intercept = TRUE,
  type = "OLS",
  prior = "Flat",
  psi0 = 5,
  d = 0.5
)

Arguments

f

A t \times k matrix of factors, where k is the number of factors and t is the number of periods

R

A t \times N matrix of test assets, where t is the number of periods and N is the number of test assets

sim_length

The length of MCMCs

intercept

If intercept = TRUE (intercept = FALSE), the model includes (does not include) the intercept. The default is intercept = TRUE

type

If type = 'OLS' (type = 'GLS'), the function returns Bayesian OLS (GLS) estimates of risk prices \lambda. The default is 'OLS'

prior

If type = 'Flat' (type = 'Normal'), the function executes the Bayesian estimation with the flat prior (normal prior). The default is 'Flat'

psi0

The hyper-parameter of the prior distribution of risk prices \lambda used in the normal prior (see Details). This parameter is needed only when the user chooses the normal prior. The default value is 5

d

The hyper-parameter of the prior distribution of risk prices \lambda used in the normal prior (see Details). The default value is 0.5

Details

Intercept

Consider the cross-sectional step. If one includes the intercept, the model is

\mu_R = \lambda_c 1_N + C_f \lambda_f = C \lambda,

where C = (1_N, C_f) and \lambda^\top = (\lambda_c^\top, \lambda_f^\top)^\top . If one doesn't include the intercept, the model is

\mu_R = C_f \lambda_f = C \lambda,

where C = C_f and \lambda = \lambda_f.

Bayesian Estimation

Let Y_t = f_t \cup R_t. Conditional on the data Y = \{Y_t\}_{t=1}^T, we can draw \mu_{Y} and \Sigma_{Y} from the Normal-inverse-Wishart system

\mu_Y | \Sigma_Y, Y \sim N (\hat{\mu}_Y , \Sigma_Y / T) ,

\Sigma_Y | Y \sim W^{-1} (T-1, \Sigma_{t=1}^{T} (Y_t - \hat{\mu}_Y ) ( Y_t - \hat{\mu}_Y )^\top ) ,

where W^{-1} is the inverse-Wishart distribution. We do not standardize Y_t in the time-series regression. In the empirical implementation, after obtaining posterior draws for \mu_{Y} and \Sigma_{Y}, we calculate \mu_R and C_f as the standardized expected returns of test assets and correlation between test assets and factors. It follows that C is a matrix containing a vector of ones and C_f.

The prior distribution of risk prices is either the flat prior or the normal prior.

With prior = 'Flat' and type = 'OLS', for each draw, the risk price estimate is

\hat{\lambda} = (C^{\top} C)^{-1}C^{T} \mu_{R} .

With prior = 'Flat' and type = 'GLS', for each draw, the risk price estimate is

\hat{\lambda} = (C^{\top} \Sigma^{-1}_{R} C)^{-1} C^{\top} \Sigma^{-1}_{R} \mu_{R}

If one chooses prior = 'Normal', the prior of factor j's risk price is

\lambda_j | \sigma^2 \sim N(0, \sigma^2 \psi \tilde{\rho}_j^\top \tilde{\rho}_j T^d ) ,

where \tilde{\rho}_j = \rho_j - (\frac{1}{N} \Sigma_{i=1}^{N} \rho_{j,i} ) \times 1_N is the cross-sectionally demeaned vector of factor j's correlations with asset returns. Equivalently,

\lambda | \sigma^2 \sim N(0, \sigma^2 D^{-1}) ,

D = diag \{ (\psi \tilde{\rho}_1^\top \tilde{\rho}_1 T^d)^{-1}, ..., (\psi \tilde{\rho}_k^\top \tilde{\rho}_k T^d)^{-1} \} \ \ without \ intercept;

D = diag \{ c, (\psi \tilde{\rho}_1^\top \tilde{\rho}_1 T^d)^{-1}, ..., (\psi \tilde{\rho}_k^\top \tilde{\rho}_k T^d)^{-1} \} \ \ with \ intercept;

where c is a small positive number corresponding to the common cross-sectional intercept (\lambda_c). Default values for \psi (psi0) and d (d) are 5 and 0.5, respectively.

With prior = 'Normal' and type = 'OLS', for each draw, the risk price estimate is

\hat{\lambda} = ( C^{\top} C +D )^{-1} C^{\top} \mu_R .

With prior = 'Normal' and type = 'GLS', for each draw, the risk price estimate is

\hat{\lambda} = ( C^{\top} \Sigma_R^{-1} C +D )^{-1} C^{\top} \Sigma_R^{-1} \mu_R .

Value

The return of BayesianSDF is a list that contains the following elements:

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487–557.

Examples

## <-------------------------------------------------------------------------------->
## Example: Bayesian estimates of risk prices and R2
## This example is from the paper (see Section III. Simulation)
## <-------------------------------------------------------------------------------->

library(reshape2)
library(ggplot2)

# Load the example data
data("BFactor_zoo_example")
HML <- BFactor_zoo_example$HML
lambda_ols <- BFactor_zoo_example$lambda_ols
R2.ols.true <- BFactor_zoo_example$R2.ols.true
sim_f <- BFactor_zoo_example$sim_f
sim_R <- BFactor_zoo_example$sim_R
uf <- BFactor_zoo_example$uf
W_ols <- BFactor_zoo_example$W_ols

cat("Load the simulated example \n")

cat("Cross-section: Fama-French 25 size and value portfolios \n")
cat("True pricing factor in simulations: HML \n")
cat("Pseudo-true cross-sectional R-squared:", R2.ols.true, "\n")
cat("Pseudo-true (monthly) risk price:", lambda_ols[2], "\n")

cat("----------------------------- Bayesian SDF ----------------------------\n")
cat("------------------------ See definitions 1 and 2 ----------------------\n")

cat("--------------------- Bayesian SDF: Strong factor ---------------------\n")

sim_result <- SDF_gmm(sim_R, sim_f, W_ols)   # GMM estimation
# sim_result$lambda_gmm
# sqrt(sim_result$Avar_hat[2,2])
# sim_result$R2_adj

## Now estimate the model using Bayesian method
two_step <- BayesianSDF(sim_f, sim_R, sim_length =  2000, psi0 = 5, d = 0.5)
# apply(X = two_step$lambda_path, FUN = quantile, MARGIN = 2, probs = c(0.05, 0.95))
# quantile(two_step$R2_path, probs = c(0.05, 0.5, 0.95))

# Note that the first element correspond to lambda of the constant term
# So we choose k=2 to get lambda of the strong factor
k <- 2
m1 <- sim_result$lambda_gmm[k]
sd1 <- sqrt(sim_result$Avar_hat[k,k])

bfm<-two_step$lambda_path[1001:2000, k]
fm<-rnorm(5000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("GMM-OLS", "BSDF-OLS")
data.long<-melt(data)

#
### Figure 1(c)
#
p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
p+
 stat_density(aes(x=value, colour=variable),
              geom="line",position="identity", size = 2, adjust=1) +
 geom_vline(xintercept = lambda_ols[2], linetype="dotted", color = "#8c8c8c", size=1.5)+
 guides(colour = guide_legend(override.aes=list(size=2), title.position = "top",
 title.hjust = 0.5, nrow=1,byrow=TRUE))+
 theme_bw()+
 labs(color=element_blank()) +
 labs(linetype=element_blank()) +
 theme(legend.key.width=unit(4,"line")) +
 theme(legend.position="bottom")+
 theme(text = element_text(size = 26))+
 xlab(bquote("Risk price ("~lambda[strong]~")")) +
 ylab("Density" )


cat("--------------------- Bayesian SDF: Useless factor --------------------\n")

sim_result <- SDF_gmm(sim_R, uf, W_ols)
# sim_result$lambda_gmm
# sqrt(sim_result$Avar_hat[2,2])
# sim_result$R2_adj

two_step <- BayesianSDF(uf, sim_R, sim_length =  2000, psi0 = 5, d = 0.5)
#apply(X = two_step$lambda_path, FUN = quantile, MARGIN = 2, probs = c(0.05, 0.95))


## Posterior (Asymptotic) Distribution of lambda
k <- 2
m1 <- sim_result$lambda[k]
sd1 <- sqrt(sim_result$Avar_hat[k,k])

bfm<-two_step$lambda_path[1001:2000, k]
fm<-rnorm(5000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("GMM-OLS", "BSDF-OLS")
data.long<-melt(data)

#
### Figure 1(a)
#
p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
p+
 stat_density(aes(x=value, colour=variable),
              geom="line",position="identity", size = 2, adjust=2) +
 geom_vline(xintercept = 0, linetype="dotted", color = "#8c8c8c", size=1.5)+
 guides(colour = guide_legend(override.aes=list(size=2),
 title.position = "top", title.hjust = 0.5, nrow=1,byrow=TRUE))+
 theme_bw()+
 labs(color=element_blank()) +
 labs(linetype=element_blank()) +
 theme(legend.key.width=unit(4,"line")) +
 theme(legend.position="bottom")+
 theme(text = element_text(size = 26))+
 xlab(bquote("Risk price ("~lambda[spurious]~")")) +
 ylab("Density" )




[Package BayesianFactorZoo version 0.0.0.2 Index]