BayesTreePriorNotOrthogonal {BayesTreePrior} | R Documentation |
Simulation of the tree prior in the general case (Case #4).
Description
Generate n_{iter}
trees from the prior distribution in the general case (Case #4).
Usage
BayesTreePriorNotOrthogonal(alpha, beta, X, n_iter = 500, minpart = 1,
pvars = NULL, MIA = FALSE, missingdummy = FALSE)
Arguments
alpha |
base parameter of the tree prior, |
beta |
power parameter of the tree prior, |
X |
data.frame of the design matrix. |
n_iter |
number of trees to generate, |
minpart |
the minimum number of observations required in one of the child to be able to split, |
pvars |
vector of probabilities for the choices of variables to split (Will automatically be normalized so that the sum equal to 1). It must be twice as large as the number of variables when |
MIA |
set to TRUE if you want Missing Incorporated in Attributes (MIA) imputation to be used. |
missingdummy |
set to TRUE if you have dummy coded the NAs. |
Value
Returns a list containing, in the following order: the mean number of bottom nodes, the standard deviation of the number of bottom nodes, the mean of the depth, the standard deviation of the depth and a data.frame of vectors (b_i,d_i)
, where b_i
is the number of bottom nodes and d_i
is the depth of the i
th generated tree (i=1, \ldots ,n_{iter}
).
See Also
BayesTreePriorOrthogonalInf
, BayesTreePriorOrthogonal
Examples
if (requireNamespace("MASS", quietly = TRUE)) {
x1 = MASS::mcycle$times
x1[sample(1:length(x1), 20)] <- NA
x2= MASS::mcycle$accel
x2[sample(1:length(x2), 20)] <- NA
X = cbind(x1, x2)
results1 = BayesTreePriorNotOrthogonal(.95,.5, data.frame(X), minpart=5)
X_dummies = is.na(X) + 0
results2 = BayesTreePriorNotOrthogonal(.95,.5, data.frame(cbind(X,X_dummies)), minpart=5,
MIA=TRUE, missingdummy=TRUE)
}