plot_models {BayesTools} | R Documentation |
Plot estimates from models
Description
Plot estimates from models
Usage
plot_models(
model_list,
samples,
inference,
parameter,
plot_type = "base",
prior = FALSE,
conditional = FALSE,
order = NULL,
transformation = NULL,
transformation_arguments = NULL,
transformation_settings = FALSE,
par_name = NULL,
formula_prefix = TRUE,
...
)
Arguments
model_list |
list of models, each of which contains marginal
likelihood estimated with bridge sampling |
samples |
samples from a posterior distribution for a parameter generated by mix_posteriors. |
inference |
object created by ensemble_inference function |
parameter |
parameter name to be plotted. Does not support PET-PEESE and weightfunction. |
plot_type |
whether to use a base plot |
prior |
whether prior distribution should be added to the figure |
conditional |
whether conditional models should be displayed |
order |
list specifying ordering of the models. The first
element describes whether the ordering should be |
transformation |
transformation to be applied to the prior distribution. Either a character specifying one of the prepared transformations:
, or a list containing the transformation function |
transformation_arguments |
a list with named arguments for
the |
transformation_settings |
boolean indicating whether the
settings the |
par_name |
a type of parameter for which the prior is specified. Only relevant if the prior corresponds to a mu parameter that needs to be transformed. |
formula_prefix |
whether the |
... |
additional arguments. E.g.:
|
Details
Plots prior and posterior estimates of the same parameter across multiple models (prior distributions with orthonormal/meandif contrast are always plotted as differences from the grand mean).
Value
plot_models
returns either NULL
or
an object of class 'ggplot' if plot_type is plot_type = "ggplot"
.
See Also
prior()
lines_prior_list()
geom_prior_list()