marginal_inference {BayesTools} | R Documentation |
Model-average marginal posterior distributions and marginal Bayes factors
Description
Creates marginal model-averaged and conditional posterior distributions based on a list of models, vector of parameters, formula, and a list of indicators of the null or alternative hypothesis models for each parameter. Computes inclusion Bayes factors for each marginal estimate via a Savage-Dickey density approximation.
Usage
marginal_inference(
model_list,
marginal_parameters,
parameters,
is_null_list,
formula,
null_hypothesis = 0,
normal_approximation = FALSE,
n_samples = 10000,
seed = NULL,
silent = FALSE
)
Arguments
model_list |
list of models, each of which contains marginal
likelihood estimated with bridge sampling |
marginal_parameters |
parameters for which the the marginal summary should be created |
parameters |
all parameters included in the model_list that are
relevant for the formula (all of which need to have specification of
|
is_null_list |
list with entries for each parameter carrying either logical vector of indicators specifying whether the model corresponds to the null or alternative hypothesis (or an integer vector indexing models corresponding to the null hypothesis) |
formula |
model formula (needs to be specified if |
null_hypothesis |
point null hypothesis to test. Defaults to |
normal_approximation |
whether the height of prior and posterior density should be
approximated via a normal distribution (rather than kernel density). Defaults to |
n_samples |
number of samples to be drawn for the model-averaged posterior distribution |
seed |
seed for random number generation |
silent |
whether warnings should be returned silently. Defaults to |
Value
mix_posteriors
returns a named list of mixed posterior
distributions (either a vector of matrix).
See Also
ensemble_inference mix_posteriors BayesTools_ensemble_tables