plot.BayesSurvive {BayesSurvive} | R Documentation |
Create a plot of estimated coefficients
Description
Plot point estimates of regression coefficients and 95% credible intervals
Usage
## S3 method for class 'BayesSurvive'
plot(x, type = "mean", interval = TRUE, subgroup = 1, ...)
Arguments
x |
an object of class |
type |
type of point estimates of regression coefficients. One of
|
interval |
logical argument to show 95% credible intervals. Default
is |
subgroup |
index of the subgroup for visualizing posterior coefficients |
... |
additional arguments sent to |
Value
ggplot object
Examples
library("BayesSurvive")
set.seed(123)
# Load the example dataset
data("simData", package = "BayesSurvive")
dataset <- list(
"X" = simData[[1]]$X,
"t" = simData[[1]]$time,
"di" = simData[[1]]$status
)
# Initial value: null model without covariates
initial <- list("gamma.ini" = rep(0, ncol(dataset$X)))
# Hyperparameters
hyperparPooled <- list(
"c0" = 2, # prior of baseline hazard
"tau" = 0.0375, # sd for coefficient prior
"cb" = 20, # sd for coefficient prior
"pi.ga" = 0.02, # prior variable selection probability for standard Cox models
"a" = -4, # hyperparameter in MRF prior
"b" = 0.1, # hyperparameter in MRF prior
"G" = simData$G # hyperparameter in MRF prior
)
# run Bayesian Cox with graph-structured priors
fit <- BayesSurvive(
survObj = dataset, hyperpar = hyperparPooled,
initial = initial, nIter = 100
)
# show posterior mean of coefficients and 95% credible intervals
library("GGally")
plot(fit) +
coord_flip() +
theme(axis.text.x = element_text(angle = 90, size = 7))
[Package BayesSurvive version 0.0.2 Index]