coef.BayesSurvive {BayesSurvive} | R Documentation |
Create a dataframe of estimated coefficients
Description
Estimate regression coefficients with posterior mean/median, credible intervals, standard deviation, or MPM estimates, posterior gammas
Usage
## S3 method for class 'BayesSurvive'
coef(
object,
MPM = FALSE,
type = "mean",
CI = 95,
SD = FALSE,
subgroup = 1,
...
)
Arguments
object |
an object of class |
MPM |
logical value to obtain MPM coefficients. Default: FALSE |
type |
type of point estimates of regression coefficients. One of
|
CI |
size (level, as a percentage) of the credible interval to report. Default: 95, i.e. a 95% credible interval |
SD |
logical value to show each coefficient's standard deviation over MCMC iterations |
subgroup |
index of the subgroup for visualizing posterior coefficients |
... |
other arguments |
Value
dataframe object
Examples
library("BayesSurvive")
set.seed(123)
# Load the example dataset
data("simData", package = "BayesSurvive")
dataset <- list(
"X" = simData[[1]]$X,
"t" = simData[[1]]$time,
"di" = simData[[1]]$status
)
# Initial value: null model without covariates
initial <- list("gamma.ini" = rep(0, ncol(dataset$X)))
# Hyperparameters
hyperparPooled <- list(
"c0" = 2, # prior of baseline hazard
"tau" = 0.0375, # sd for coefficient prior
"cb" = 20, # sd for coefficient prior
"pi.ga" = 0.02, # prior variable selection probability for standard Cox models
"a" = -4, # hyperparameter in MRF prior
"b" = 0.1, # hyperparameter in MRF prior
"G" = simData$G # hyperparameter in MRF prior
)
# run Bayesian Cox with graph-structured priors
fit <- BayesSurvive(
survObj = dataset, hyperpar = hyperparPooled,
initial = initial, nIter = 100
)
# show posterior coefficients
betas <- coef(fit)
head(betas)
[Package BayesSurvive version 0.0.2 Index]