| ssdSig {BayesRepDesign} | R Documentation |
Sample size determination for replication success based on significance
Description
This function computes the standard error required to achieve replication success with a certain probability and based on statistical significance of the replication effect estimate.
Usage
ssdSig(level, dprior, power)
Arguments
level |
Significance level for the replication effect estimate (one-sided and in the same direction as the original effect estimate) |
dprior |
Design prior object |
power |
Desired probability of replication success |
Value
Returns an object of class "ssdRS". See ssd for
details.
Author(s)
Samuel Pawel
References
Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552
Examples
## specify design prior
to1 <- 2
so1 <- 0.5
dprior <- designPrior(to = to1, so = so1, tau = 0.1)
ssdSig(level = 0.025, dprior = dprior, power = 0.9)
[Package BayesRepDesign version 0.42 Index]