ssd {BayesRepDesign} | R Documentation |
Sample size determination for replication success
Description
This function computes the standard error of the replication effect estimate required to achieve replication success with a certain probability and based on a certain type of success region.
Usage
ssd(
sregionfun,
dprior,
power,
nsites = 1,
searchInt = c(.Machine$double.eps^0.5, 4),
...
)
Arguments
sregionfun |
Function that returns the success region for replication effect estimate as a function of the replication standard error |
dprior |
Design prior object |
power |
Desired probability of replication success |
nsites |
Number of sites. Defaults to |
searchInt |
Search interval for standard errors |
... |
Other arguments passed to |
Value
Returns an object of class "ssdRS"
which is a list containing:
designPrior | The specified "designPrior" object |
power | The specified power |
powerRecomputed | The recomputed power |
sr | The required replication standard error |
c | The required relative sample size c = nr/no
(assuming so = unitSD/no and sr = unitSD/nr ) |
Author(s)
Samuel Pawel
References
Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552
Examples
## specify design prior
to1 <- 2
so1 <- 1
dprior <- designPrior(to = to1, so = so1)
## compute required standard error for significance at one-sided 2.5%
sregionfunSig <- function(sr, alpha = 0.025) {
successRegion(intervals = cbind(stats::qnorm(p = 1- alpha)*sr, Inf))
}
ssd(sregionfun = sregionfunSig, dprior = dprior, power = 0.8)
[Package BayesRepDesign version 0.42 Index]