porsBFr {BayesRepDesign} | R Documentation |
Probability of replication success based on replication Bayes factor
Description
This function computes the probability to achieve replication success based on the replication Bayes factor. The replication Bayes factor is assumed to be oriented so that values below one indicate replication success, whereas values above one indicate evidence for the null hypothesis.
Usage
porsBFr(level, dprior, sr, paradox = TRUE)
Arguments
level |
Bayes factor level below which replication success is achieved |
dprior |
Design prior object |
sr |
Replication standard error |
paradox |
Should the probability of replication success be computed
allowing for the replication paradox (replication success when the effect
estimates from original and replication study have a different sign)?
Defaults to |
Value
The probability to achieve replication success
Author(s)
Samuel Pawel
References
Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552
Verhagen, J. and Wagenmakers, E. J. (2014). Bayesian tests to quantify the result of a replication attempt. Journal of Experimental Psychology: General, 145:1457-1475. doi:10.1037/a0036731
Ly, A., Etz, A., Marsman, M., & Wagenmakers, E.-J. (2018). Replication Bayes factors from evidence updating. Behavior Research Methods, 51(6), 2498-2508. doi:10.3758/s13428-018-1092-x
Examples
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.03)
porsBFr(level = 1/10, dprior = dprior, sr = c(0.05, 0.04))