pors {BayesRepDesign} | R Documentation |
Compute probability of replication success
Description
This function computes the probabiliy of replication success based on a success region for the replication effect estimate, a design prior, and a replication standard error. If the specified number of sites is larger than 1, the supplied success region has to be formulated in terms of the meta-analytic replication effect estimate across sites.
Usage
pors(sregion, dprior, sr, nsites = 1)
Arguments
sregion |
Success region for replication effect estimate |
dprior |
Design prior object |
sr |
Standard error of replication effect estimate |
nsites |
Number of sites, defaults to |
Value
The probability of replication success
Author(s)
Samuel Pawel
References
Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552
Examples
dprior <- designPrior(to = 1.1, so = 1)
sregion <- successRegion(intervals = cbind(1.96, Inf))
pors(sregion = sregion, dprior = dprior, sr = 1)
[Package BayesRepDesign version 0.42 Index]