repPosterior {BayesRep} | R Documentation |
Effect size posterior distribution
Description
Computes the posterior distribution of the effect size based on the original and replication effect estimates and their standard errors, assuming a common underlying effect size and an initial flat prior.
Usage
repPosterior(
to,
so,
tr,
sr,
lower = min(c(to, tr)) - 4/sqrt(1/so^2 + 1/sr^2),
upper = max(c(to, tr)) + 4/sqrt(1/so^2 + 1/sr^2),
nGrid = 1000,
plot = TRUE,
CI = TRUE,
...
)
Arguments
to |
Original effect estimate |
so |
Standard error of the original effect estimate |
tr |
Replication effect estimate |
sr |
Standard error of the replication effect estimate |
lower |
Lower bound of range for which distribution should computed.
Defaults to minimum of |
upper |
Upper bound of range for which distribution should computed.
Defaults to maximum of |
nGrid |
Number of grid points. Defaults to |
plot |
Logical indicating whether posterior distribution should be
plotted. If |
CI |
Logical indicating whether 95% highest posterior credible interval
should be plotted. Defaults to |
... |
Additional arguments passed to |
Value
Plots posterior distribution of the effect size, invisibly returns a list with the data for the plot
Author(s)
Samuel Pawel
Examples
## Example from Reproducibility Project Cancer Biology
## Aird: Data from https://elifesciences.org/articles/21253 Fig4B
hro <- 25.93
lhro <- log(hro)
hroCI <- c(5.48, 122.58)
se_lhro <- diff(log(hroCI))/(2*qnorm(0.975))
hrr <- 3.75
lhrr <- log(hrr)
hrrCI <- c(1.19, 11.81)
se_lhrr <- diff(log(hrrCI))/(2*qnorm(0.975))
repPosterior(to = lhro, so = se_lhro, tr = lhrr, sr = se_lhrr)