SimulatedDataGenerator.CumulativeProbit {BayesRGMM} | R Documentation |
Simulating a longitudinal ordinal data with HSD correlation structures.
Description
This function is used to simulate data for the cumulative probit mixed-effects model with HSD correlation structures.
Usage
SimulatedDataGenerator.CumulativeProbit(
Num.of.Obs,
Num.of.TimePoints,
Num.of.Cats,
Fixed.Effs,
Random.Effs,
DesignMat,
Missing,
HSD.DesignMat.para
)
Arguments
Num.of.Obs |
the number of subjects will be simulated. |
Num.of.TimePoints |
the maximum number of time points among all subjects. |
Num.of.Cats |
the number of categories. |
Fixed.Effs |
a vector of regression coefficients. |
Random.Effs |
a list of covariance matrix and the degree of freedom, |
DesignMat |
a design matrix. |
Missing |
a list of the missing mechanism of observations, 0: data is complete, 1: missing complete at random, 2: missing at random related to responses , and 3: 2: missing at random related to covariates and the corresponding regression coefficients (weights) on the previous observed values either responses or covariates, e.g., |
HSD.DesignMat.para |
the list of parameters in HSD correlation structure, |
Value
a list containing the following components:
- sim.data
The simulated response variables
y
, covariatesx
's, and subject identifcation ‘id’.- beta.true
The given values of fixed effects.
- classes
The intervals of classes.
- HSD.para
The given values of parameters in HSD model.
Examples
## Not run:
library(BayesRGMM)
rm(list=ls(all=TRUE))
Fixed.Effs = c(-0.1, 0.1, -0.1)
P = length(Fixed.Effs)
q = 1 #number of random effects
T = 7 #time points
N = 100 #number of subjects
Num.of.Cats = 3 #number of categories
num.of.iter = 1000 #number of iterations
HSD.para = c(-0.9, -0.6) #the parameters in HSD model
a = length(HSD.para)
w = array(runif(T*T*a), c(T, T, a)) #design matrix in HSD model
for(time.diff in 1:a)
w[, , time.diff] = 1*(as.matrix(dist(1:T, 1:T, method="manhattan"))
==time.diff)
x = array(0, c(T, P, N))
for(i in 1:N){
x[, 1, i] = 1:T
x[, 2, i] = rbinom(1, 1, 0.5)
x[, 3, i] = x[, 1, i]*x[, 2, i]
}
DesignMat = x
#MAR
CPREM.sim.data = SimulatedDataGenerator.CumulativeProbit(
Num.of.Obs = N, Num.of.TimePoints = T, Num.of.Cats = Num.of.Cats,
Fixed.Effs = Fixed.Effs, Random.Effs = list(Sigma = 0.5*diag(1), df=3),
DesignMat = DesignMat, Missing = list(Missing.Mechanism = 2,
MissingRegCoefs=c(-0.7, -0.2, -0.1)),
HSD.DesignMat.para = list(HSD.para = HSD.para, DesignMat = w))
print(table(CPREM.sim.data$sim.data$y))
print(CPREM.sim.data$classes)
## End(Not run)