MC_ranks {BayesMultMeta} | R Documentation |
Computes the ranks within the pooled draws of Markov chains
Description
The function computes the ranks within the pooled draws of Markov chains. Average ranks are used for ties.
Usage
MC_ranks(MC)
Arguments
MC |
An |
Value
a matrix with the ranks from the MCMC procedure
Examples
dataREM<-mvmeta::hyp
# Observation matrix X
X<-t(cbind(dataREM$sbp,dataREM$dbp))
p<-nrow(X) # model dimension
n<-ncol(X) # sample size
# Matrix U
U<-matrix(0,n*p,n*p)
for (i_n in 1:n) {
Use<-diag(c(dataREM$sbp_se[i_n],dataREM$dbp_se[i_n]))
Corr_mat<-matrix(c(1,dataREM$rho[i_n],dataREM$rho[i_n],1),p,p)
U[(p*(i_n-1)+1):(p*i_n),(p*(i_n-1)+1):(p*i_n)]<- Use%*%Corr_mat%*%Use
}
# Generating M Markov chains for mu_1
M<-4 # number of chains
MC <-NULL
for (i in 1:M) {
chain <- BayesMultMeta(X, U, 1e2, burn_in = 1e2,
likelihood = "t", prior="jeffrey",
algorithm_version = "mu",d=3)
MC<- cbind(MC,chain$mu[1,])
}
ranks<-MC_ranks(MC)
id_chain <- 1
hist(ranks[,id_chain],breaks=25,prob=TRUE, labels = FALSE, border = "dark blue",
col = "light blue", main = expression("Chain 1,"~mu[1]), xlab = expression(),
ylab = expression(),cex.axis=1.2,cex.main=1.7,font=2)
[Package BayesMultMeta version 0.1.1 Index]