SMNGdistribution {BayesLN} | R Documentation |
SMNG and logSMNG Distributions
Description
Density function, distribution function, quantile function and random generator for the SMNG distribution and the logSMNG.
It requires the specification of a five prameters vector: mu
, delta
, gamma
, lambda
and
beta
.
Usage
dSMNG(
x,
mu = 0,
delta,
gamma,
lambda,
beta = 0,
inf_sum = FALSE,
rel_tol = 1e-05
)
pSMNG(q, mu, delta, gamma, lambda, beta, rel_tol = 1e-05)
qSMNG(p, mu, delta, gamma, lambda, beta, rel_tol = 1e-05)
rSMNG(n, mu, delta, gamma, lambda, beta)
dlSMNG(x, mu = 0, delta, gamma, lambda, beta, inf_sum = FALSE, rel_tol = 1e-05)
plSMNG(q, mu, delta, gamma, lambda, beta, rel_tol = 1e-05)
qlSMNG(p, mu, delta, gamma, lambda, beta, rel_tol = 1e-05)
rlSMNG(n, mu, delta, gamma, lambda, beta)
Arguments
x , q |
Vector of quantiles. |
mu |
Location parameter, default set to 0. |
delta |
Concentration parameter, must be positive. |
gamma |
Tail parameter, must be positive. |
lambda |
Shape parameter. |
beta |
Skewness parameter, default set to 0 (symmetric case). |
inf_sum |
Logical: if FALSE (default) the integral representation of the SMNG density is used, otherwise the infinite sum is employed. |
rel_tol |
Level of relative tolerance required for the |
p |
Vector of probabilities. |
n |
Sample size. |
Details
The SMNG distribution is a normal scale-mean mixture distribution with a GIG as mixing distribution. The density can be expressed as an infinite sum of Bessel K functions and it is characterized by 5 parameters.
Moreover, if X is SMNG distributed, then Z=exp(X)
is distributed as a log-SMNG distribution.
Value
dSMNG
and dlSMNG
provide the values of the density function at a quantile x
for, respectively
a SMNG distribution and a log-SMNG.
pSMNG
and plSMNG
provide the cumulative distribution function at a quantile q
.
qSMNG
and qlSMNG
provide the quantile corresponding to a probability level p
.
rSMNG
and rlSMNG
generate n
independent samples from the desired distribution.
Examples
### Plots of density and cumulative functions of the SMNG distribution
x<-seq(-10,10,length.out = 500)
plot(x,dSMNG(x = x,mu = 0,delta = 1,gamma = 1,lambda = 1,beta= 2),
type="l",ylab="f(x)")
lines(x,dSMNG(x = x,mu = 0,delta = 1,gamma = 1,lambda = 1,beta= -2),col=2)
title("SMNG density function")
plot(x,pSMNG(q = x,mu = 0,delta = 1,gamma = 1,lambda = 1,beta= 2),
type="l",ylab="F(x)")
lines(x,pSMNG(q = x,mu = 0,delta = 1,gamma = 1,lambda = 1,beta= -2),col=2)
title("SMNG cumulative function")
### Plots of density and cumulative functions of the logSMNG distribution
x<-seq(0,20,length.out = 500)
plot(x,dlSMNG(x = x,mu = 0,delta = 1,gamma = 1,lambda = 2,beta = 1),
type="l",ylab="f(x)",ylim = c(0,1.5))
lines(x,dlSMNG(x = x,mu = 0,delta = 1,gamma = 1,lambda = 2,beta = -1),col=2)
title("logSMNG density function")
plot(x,plSMNG(q = x,mu = 0,delta = 1,gamma = 1,lambda = 2,beta = 1),
type="l",ylab="F(x)",ylim = c(0,1))
lines(x,plSMNG(q = x,mu = 0,delta = 1,gamma = 1,lambda = 2,beta = -1),col=2)
title("logSMNG cumulative function")