.lambda_MH_cp {BayesFBHborrow} | R Documentation |
Lambda MH step, proposal from conditional conjugate posterior
Description
Lambda MH step, proposal from conditional conjugate posterior
Usage
.lambda_MH_cp(
df_hist,
df_curr,
Y,
I,
X,
s,
beta,
beta_0 = NULL,
mu,
sigma2,
lambda,
lambda_0,
tau,
bp,
bp_0 = 0,
J,
a_lam = 0.01,
b_lam = 0.01,
lambda_move = 0,
lambda_count = 0,
alpha = 0.3
)
Arguments
df_hist |
data.frame from dataframe_fun() |
df_curr |
data.frame from dataframe_fun() |
Y |
data |
I |
censoring indicator |
X |
design matrix |
s |
split point locations, J + 2 |
beta |
parameter value for covariates |
beta_0 |
parameter value for historical covariates |
mu |
prior mean for baseline hazard |
sigma2 |
prior variance hyperparameter for baseline hazard |
lambda |
baseline hazard |
lambda_0 |
historical baseline hazard |
tau |
borrowing parameter |
bp |
number of covariates, length(beta) |
bp_0 |
number of covariates, length(beta_0) |
J |
number of split points |
a_lam |
lambda hyperparameter |
b_lam |
lambda hyperparameter |
lambda_move |
number of accepted lambda moves |
lambda_count |
total number of lambda moves |
alpha |
power parameter |
Value
list of updated (if accepted) lambda and data.frames, as well as the number of accepted moves
[Package BayesFBHborrow version 2.0.1 Index]