| .lambda_0_MH_cp {BayesFBHborrow} | R Documentation | 
Lambda_0 MH step, proposal from conditional conjugate posterior
Description
Lambda_0 MH step, proposal from conditional conjugate posterior
Usage
.lambda_0_MH_cp(
  df_hist,
  Y_0,
  I_0,
  X_0 = NULL,
  s,
  beta_0 = NULL,
  mu,
  sigma2,
  lambda,
  lambda_0,
  tau,
  bp_0 = 0,
  J,
  clam,
  a_lam = 0.01,
  b_lam = 0.01,
  lambda_0_count = 0,
  lambda_0_move = 0
)
Arguments
| df_hist | data.frame from dataframe_fun() | 
| Y_0 | historical trial data | 
| I_0 | historical trial censoring indicator | 
| X_0 | historical trial design matrix | 
| s | split point locations, (J+2) | 
| beta_0 | parameter value for historical covariates | 
| mu | prior mean for baseline hazard | 
| sigma2 | prior variance hyperparameter for baseline hazard | 
| lambda | baseline hazard | 
| lambda_0 | historical baseline hazard | 
| tau | borrowing parameter | 
| bp_0 | number of covariates, length(beta_0) | 
| J | number of split points | 
| clam | controls neighbor interactions, in range (0, 1) | 
| a_lam | lambda hyperparameter, default is 0.01 | 
| b_lam | lambda hyperparameter, default is 0.01 | 
| lambda_0_count | number of total moves for lambda_0 | 
| lambda_0_move | number of accepted moves for lambda_0 | 
Value
list of updated (if accepted) lambda_0 and data.frames, as well as the number of accepted moves
[Package BayesFBHborrow version 2.0.1 Index]