.J_RJMCMC {BayesFBHborrow} | R Documentation |
RJMCMC (with Bayesian Borrowing)
Description
Metropolis-Hastings Green Reversible Jump move, with Bayesian Borrowing
Usage
.J_RJMCMC(
df_hist,
df_curr,
Y,
Y_0,
I,
I_0,
X,
X_0,
lambda,
lambda_0,
beta,
beta_0,
mu,
sigma2,
tau,
s,
J,
Jmax,
bp,
bp_0,
clam_smooth,
a_tau = NULL,
b_tau = NULL,
c_tau = NULL,
d_tau = NULL,
type,
p_0 = NULL,
phi,
pi_b,
maxSj
)
Arguments
df_hist |
data_frame containing historical data. |
df_curr |
data_frame containing current trial data. |
Y |
data. |
Y_0 |
historical data. |
I |
censoring indicator. |
I_0 |
historical trial censoring indicator. |
X |
design matrix. |
X_0 |
historical trial design matrix. |
lambda |
baseline hazard. |
lambda_0 |
historical trial baseline hazard. |
beta |
current trial parameters. |
beta_0 |
historical trial parameters. |
mu |
prior mean for baseline hazard. |
sigma2 |
prior variance hyperparameter for baseline hazard. |
tau |
borrowing parameter. |
s |
split point locations, J + 2. |
J |
number of split points. |
Jmax |
maximum number of split points. |
bp |
number of covariates in current trial. |
bp_0 |
number of covariates in historical trial. |
clam_smooth |
neighbor interactions, in range (0, 1), for ICAR update. |
a_tau |
tau hyperparameter. |
b_tau |
tau hyperparameter. |
c_tau |
tau hyperparameter. |
d_tau |
tau hyperparameter. |
type |
choice of borrowing, "mix", "uni", or any other string for borrowing on every baseline hazard without mixture. |
p_0 |
mixture ratio. |
phi |
J hyperparameter. |
pi_b |
probability of birth move. |
maxSj |
maximal time point, either current or historic. |
Value
list of proposed J and s, with adjusted values of lambda, lambda_0, tau, Sigma_s, and data_frames for historical and current trial data.