f2bayes {BayesDissolution} | R Documentation |
Calculation of a Bayesian 100*prob% credible interval for the F2 parameter
Description
This function calculates a 100*prob% credible interval for the F2 parameter using Bayesian methods. The model assumes a version of the Jerffreys' prior with a pooled variance-covariance matrix from based on the reference and test data sets. See Novick (2015) for more details of the model.
Usage
f2bayes(
dis_data,
prob = 0.9,
B = 1000,
ci.type = c("quantile", "HPD"),
get.dist = FALSE
)
Arguments
dis_data |
A data frame containing the dissolution data. The first column of the data frame should denote
the group labels identifying whether a given dissolution belongs to the "reference" or "test" formulation group.
For a given dissolution run, the remaining columns of the data frame contains the individual run's dissolution
measurements sorted in time. Alternatively, the user may provide a data object of class dis_data containing the
dissolution data. See the |
prob |
The probability associated with the credible interval. A value between 0 and 1. |
B |
A positive integer specifying the number of Monte Carlo samples. |
ci.type |
The type of credible interval to report. Specifying |
get.dist |
logical; if |
Value
The function returns a 100*prob% credible interval for the F2 parameter calculated from the observed dissolution data.
Note
Use the plotdiss()
or ggplotdiss()
function to visually check if it's appropriate to calculate the f2 statistic.
References
Novick, S., Shen, Y., Yang, H., Peterson, J., LeBlond, D., and Altan, S. (2015). Dissolution Curve Comparisons Through the F2 Parameter, a Bayesian Extension of the f2 Statistic. Journal of Biopharmaceutical Statistics, 25(2):351-371.
Pourmohamad, T., Oliva Aviles, C.M., and Richardson, R. Gaussian Process Modeling for Dissolution Curve Comparisons. Journal of the Royal Statistical Society, Series C, 71(2):331-351.
Examples
### dis_data comes loaded with the package
f2bayes(dis_data, prob = 0.9, B = 1000)