gibbsBinMix {BayesBinMix} | R Documentation |
Standard Gibbs sampler
Description
This function implements full Gibbs sampling to simulate an MCMC sample from the posterior distribution assuming known number of mixture components.
Usage
gibbsBinMix(alpha, beta, gamma, K, m, burn, data,
thinning, z.true, outputDir)
Arguments
alpha |
First shape parameter of the Beta prior distribution (strictly positive). Defaults to 1. |
beta |
Second shape parameter of the Beta prior distribution (strictly positive). Defaults to 1. |
gamma |
|
K |
Number of clusters. |
m |
Number of MCMC iterations. |
burn |
Burn-in period. |
data |
Binary data. |
thinning |
Thinning of the simulated chain. |
z.true |
An optional vector of cluster assignments considered as the ground-truth clustering of the observations. Useful for simulations. |
outputDir |
Output directory. |
Details
Not really used.
Author(s)
Panagiotis Papastamoulis