plot.kclustering {BasketballAnalyzeR} | R Documentation |
Plot k-means clustering from a 'kclustering' object
Description
Plot k-means clustering from a 'kclustering' object
Usage
## S3 method for class 'kclustering'
plot(x, title = NULL, ncol.arrange = NULL, min.mid.max = NULL, ...)
Arguments
x |
an object of class |
title |
character or vector of characters (when plotting radial plots of cluster profiles; see Value), plot title(s). |
ncol.arrange |
integer, number of columns when arranging multiple grobs on a page (active when plotting radial plots of cluster profiles; see Value). |
min.mid.max |
numeric vector with 3 elements: lower bound, middle dashed line, upper bound for radial axis (active when plotting radial plots of cluster profiles; see Value). |
... |
other graphical parameters. |
Value
If x$k
is NULL
, plot.kclustering
returns a single ggplot2
object, displaying the pattern of the explained variance vs the number of clusters.
If x$k
is not NULL
, plot.kclustering
returns a list of ggplot2
objects, displaying the radial plots of the cluster profiles.
Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (basketballanalyzer.help@unibs.it)
References
P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.
See Also
Examples
FF <- fourfactors(Tbox,Obox)
X <- with(FF, data.frame(OD.Rtg=ORtg/DRtg,
F1.r=F1.Def/F1.Off, F2.r=F2.Off/F2.Def,
F3.O=F3.Def, F3.D=F3.Off))
X$P3M <- Tbox$P3M
X$STL.r <- Tbox$STL/Obox$STL
kclu1 <- kclustering(X)
plot(kclu1)
kclu2 <- kclustering(X, k=9)
plot(kclu2)