biv.norm.post {BaM} | R Documentation |
biv.norm.post
Description
A function to calculate posterior quantities of the bivariate normal. See page 94.
Usage
biv.norm.post(data.mat,alpha,beta,m,n0=5)
Arguments
data.mat |
A matrix with two columns of normally distributed data |
alpha |
Wishart first (scalar) parameter |
beta |
Wishart second (matrix) parameter |
m |
prior mean for mu |
n0 |
prior confidence parameter |
Value
Returns
mu2 |
posterior mean, dimension 1 |
sig1 |
posterior mean, dimension 2 |
sig2 |
posterior variance, dimension 1 |
rho |
posterior variance, dimension 2 |
Author(s)
Jeff Gill
Examples
rwishart <- function(df, p = nrow(SqrtSigma), SqrtSigma = diag(p)) {
if((Ident <- missing(SqrtSigma)) && missing(p)) stop("either p or SqrtSigma must be specified")
Z <- matrix(0, p, p)
diag(Z) <- sqrt(rchisq(p, df:(df-p+1)))
if(p > 1) {
pseq <- 1:(p-1)
Z[rep(p*pseq, pseq) + unlist(lapply(pseq, seq))] <- rnorm(p*(p-1)/2)
}
if(Ident) crossprod(Z)
else crossprod(Z %*% SqrtSigma)
}
data.n10 <- rmultinorm(10, c(1,3), matrix(c(1.0,0.7,0.7,3.0),2,2))
rep.mat <- NULL; reps <- 1000
for (i in 1:reps){
rep.mat <- rbind(rep.mat, biv.norm.post(data.n10,3, matrix(c(10,5,5,10),2,2),c(2,2)))
}
round(normal.posterior.summary(rep.mat),3)
[Package BaM version 1.0.3 Index]