| bv_priors {BVAR} | R Documentation |
Prior settings
Description
Function to provide priors and their parameters to bvar. Used
for adjusting the parameters treated as hyperparameters, the Minnesota prior
and adding various dummy priors through the ellipsis parameter.
Note that treating \psi (psi) as a hyperparameter in a
model with many variables may lead to very low acceptance rates and thus
hinder convergence.
Usage
bv_priors(hyper = "auto", mn = bv_mn(), ...)
Arguments
hyper |
Character vector. Used to specify the parameters to be treated
as hyperparameters. May also be set to |
mn |
List of class |
... |
Optional lists of class |
Value
Returns a named list of class bv_priors with options for
bvar.
See Also
Examples
# Extend the hyperparameters to the full Minnesota prior
bv_priors(hyper = c("lambda", "alpha", "psi"))
# Alternatively
# bv_priors("full")
# Add a dummy prior via `bv_dummy()`
# Re-create the single-unit-root prior
add_sur <- function(Y, lags, par) {
sur <- if(lags == 1) {Y[1, ] / par} else {
colMeans(Y[1:lags, ]) / par
}
Y_sur <- sur
X_sur <- c(1 / par, rep(sur, lags))
return(list("Y" = Y_sur, "X" = X_sur))
}
sur <- bv_dummy(mode = 1, sd = 1, min = 0.0001, max = 50, fun = add_sur)
# Add the new prior
bv_priors(hyper = "auto", sur = sur)