sim_DGP {BTtest} | R Documentation |
Simulate a Nonstationary Panel With Common Trends
Description
Simulate a nonstationary panel as laid out in Barigozzi & Trapani (2022, sec. 5).
Usage
sim_DGP(
N = 100,
n_Periods = 200,
drift = TRUE,
drift_I1 = TRUE,
r_I1 = 2,
r_I0 = 1,
return_factor = FALSE
)
Arguments
N |
the number of cross-sectional units. |
n_Periods |
the number of simulated time periods. |
drift |
logical. If |
drift_I1 |
logical. If |
r_I1 |
the total number of non zero-mean I(1) factors (corresponding to r_2 + r_1 * d_2). |
r_I0 |
the total number of non zero-mean I(0) factors (corresponding to r_3 + r_1 * (1 - d_2)). |
return_factor |
logical. If |
Details
For further details on the construction of the DGP, see Barigozzi & Trapani (2022, sec. 5).
Value
A (T x N) matrix of simulated observations. If return_factor = TRUE
, a (N x r) matrix of factors.
Author(s)
Paul Haimerl
References
Barigozzi, M., & Trapani, L. (2022). Testing for common trends in nonstationary large datasets. Journal of Business & Economic Statistics, 40(3), 1107-1122. doi:10.1080/07350015.2021.1901719
Examples
# Simulate a panel containing a factor with a linear drift (r_1 = d_1 = 1) and I(1) process
# (d_2 = 1), one zero-mean I(1) factor (r_2 = 1) and two zero-mean I(0) factors (r_3 = 2)
X <- sim_DGP(N = 100, n_Periods = 200, drift = TRUE, drift_I1 = TRUE, r_I1 = 2, r_I0 = 2)
# Simulate a panel containing only 3 common zero-mean I(0) factor (r_1 = 0, r_2 = 0, r_3 = 3)
X <- sim_DGP(N = 100, n_Periods = 200, drift = FALSE, drift_I1 = TRUE, r_I1 = 0, r_I0 = 3)