mcmc_bspbss {BSPBSS} | R Documentation |
MCMC algorithm for Bayesian spatial blind source separation with the thresholded Gaussian Process prior.
Description
Performan MCMC algorithm to draw samples from a Bayesian spatial blind source separation model.
Usage
mcmc_bspbss(
X,
init,
prior,
kernel,
n.iter,
n.burn_in,
thin = 1,
show_step,
ep = 0.01,
lr = 0.01,
decay = 0.01,
num_leapfrog = 5,
subsample_n = 0.5,
subsample_p = 0.5
)
Arguments
X |
Data matrix with n rows (sample) and p columns (voxel). |
init |
List of initial values, see |
prior |
List of priors, see |
kernel |
List including eigenvalues and eigenfunctions of the kernel, see |
n.iter |
Total iterations in MCMC. |
n.burn_in |
Number of burn-in. |
thin |
Thining interval. |
show_step |
Frequency for printing the current number of iterations. |
ep |
Approximation parameter. |
lr |
Per-batch learning rate in SGHMC. |
decay |
Decay parameter in SGHMC. |
num_leapfrog |
Number of leapfrog steps in SGHMC. |
subsample_n |
Mini-batch size of samples. |
subsample_p |
Mini-batch size of voxels. |
Value
List containing MCMC samples of: A, b, sigma, and zeta.
Examples
sim = sim_2Dimage(length = 30,
sigma = 5e-4,
n = 30,
smooth = 6)
ini = init_bspbss(sim$X, sim$coords,
q = 3,
ker_par = c(0.1,50),
num_eigen = 50)
res = mcmc_bspbss(ini$X,ini$init,
ini$prior,ini$kernel,
n.iter=200,n.burn_in=100,
thin=10,show_step=50)
[Package BSPBSS version 1.0.5 Index]