init_bspbss {BSPBSS} | R Documentation |
Initial values
Description
Generate initial values, set up priors and perform kernel decomposition for the MCMC algorithm.
Usage
init_bspbss(
X,
coords,
rescale = TRUE,
center = FALSE,
q = 2,
dens = 0.5,
ker_par = c(0.05, 20),
num_eigen = 500,
noise = 0
)
Arguments
X |
Data matrix with n rows (sample) and p columns (voxel). |
coords |
Cordinate matrix with p rows (voxel) and d columns (dimension). |
rescale |
If TRUE, rows of X are rescaled to have unit variance. |
center |
If TRUE, rows of X are mean-centered. |
q |
Number of latent sources. |
dens |
The initial density level (between 0 and 1) of the latent sources. |
ker_par |
2-dimensional vector (a,b) with a>0, b>0, specifing the parameters in the modified exponetial squared kernel. |
num_eigen |
Number of eigen functions. |
noise |
Gaussian noise added to the initial latent sources, with mean 0 and standard deviation being noise * sd(S0), where sd(S0) is the standard deviation of the initial latent sources. |
Value
List containing initial values, priors and eigen functions/eigen values of the kernel of the Gaussian process.
Examples
sim = sim_2Dimage(length = 30, sigma = 5e-4, n = 30, smooth = 6)
ini = init_bspbss(sim$X, sim$coords, q = 3, ker_par = c(0.1,50), num_eigen = 50)