true_vals_exp_covar {BPrinStratTTE} | R Documentation |
Adding true values to estimates for models with an exponential endpoint and consideration of predictors of the intercurrent event
Description
Adding true values to estimates for models with an exponential endpoint and consideration of predictors of the intercurrent event
Usage
true_vals_exp_covar(x, d_params, m_params)
Arguments
x |
Model object as returned by |
d_params |
List of data parameters as used in |
m_params |
List of model parameters as used in |
Value
A summary table with parameter estimates, true values and differences.
See Also
Examples
d_params_covar <- list(
n = 1000,
nt = 500,
prob_X1 = 0.4,
prob_ice_X1 = 0.5,
prob_ice_X0 = 0.2,
fu_max = 48*7,
T0T_rate = 0.2,
T0N_rate = 0.2,
T1T_rate = 0.15,
T1N_rate = 0.1
)
dat_single_trial <- sim_dat_one_trial_exp_covar(
n = d_params_covar[["n"]],
nt = d_params_covar[["nt"]],
prob_X1 = d_params_covar[["prob_X1"]],
prob_ice_X1 = d_params_covar[["prob_ice_X1"]],
prob_ice_X0 = d_params_covar[["prob_ice_X0"]],
fu_max = d_params_covar[["fu_max"]],
T0T_rate = d_params_covar[["T0T_rate"]],
T0N_rate = d_params_covar[["T0N_rate"]],
T1T_rate = d_params_covar[["T1T_rate"]],
T1N_rate = d_params_covar[["T1N_rate"]]
)
m_params_covar <- list(
tg = 48,
p = 2,
prior_delta = matrix(
c(0, 5, 0, 5),
nrow = 2, byrow = TRUE),
prior_0N = c(1.5, 5),
prior_1N = c(1.5, 5),
prior_0T = c(1.5, 5),
prior_1T = c(1.5, 5),
t_grid = seq(7, 7 * 48, 7) / 30,
chains = 2,
n_iter = 3000,
warmup = 1500,
cores = 2,
open_progress = FALSE,
show_messages = TRUE
)
fit_single <- fit_single_exp_covar(
data = dat_single_trial,
params = m_params_covar,
summarize_fit = TRUE
)
print(fit_single)
tab_obs_truth <- true_vals_exp_covar(
x = fit_single,
d_params = d_params_covar,
m_params = m_params_covar
)
print(tab_obs_truth)
[Package BPrinStratTTE version 0.0.7 Index]