fit_single_exp_nocovar {BPrinStratTTE} | R Documentation |
Fit single model to data from a two-arm trial with an exponentially distributed time-to-event endpoint and no predictor of the intercurrent event
Description
Fit single model to data from a two-arm trial with an exponentially distributed time-to-event endpoint and no predictor of the intercurrent event
Usage
fit_single_exp_nocovar(data, params, summarize_fit = TRUE)
Arguments
data |
Data frame of a structure as generated by |
params |
List, containing model parameters:
|
summarize_fit |
Logical, if |
Details
The data supplied as params
are used either as priors (prior_delta
, prior_0N
, prior_1N
, prior_1T
), to inform the model setup (tg
, p
, t_grid
), or as parameters to rstan::sampling()
which is invoked internally (chains
, n_iter
, warmup
, cores
, open_progress
, show_messages
).
Value
tibble()
containing a summary of results on key parameters, or a stanfit
object, depending on summarize_fit
.
See Also
fit_single_exp_covar()
and rstan::sampling()
Examples
d_params_nocovar <- list(
n = 500L,
nt = 250L,
prob_ice = 0.5,
fu_max = 336L,
T0T_rate = 0.2,
T0N_rate = 0.2,
T1T_rate = 0.15,
T1N_rate = 0.1
)
dat_single_trial <- sim_dat_one_trial_exp_nocovar(
n = d_params_nocovar[["n"]],
nt = d_params_nocovar[["nt"]],
prob_ice = d_params_nocovar[["prob_ice"]],
fu_max = d_params_nocovar[["fu_max"]],
T0T_rate = d_params_nocovar[["T0T_rate"]],
T0N_rate = d_params_nocovar[["T0N_rate"]],
T1T_rate = d_params_nocovar[["T1T_rate"]],
T1N_rate = d_params_nocovar[["T1N_rate"]]
)
m_params_nocovar <- list(
tg = 48L,
prior_piT = c(0.5, 0.5),
prior_0N = c(1.5, 5),
prior_1N = c(1.5, 5),
prior_0T = c(1.5, 5),
prior_1T = c(1.5, 5),
t_grid = seq(7, 7 * 48, 7) / 30,
chains = 2L,
n_iter = 3000L,
warmup = 1500L,
cores = 2L,
open_progress = FALSE,
show_messages = TRUE
)
fit_single <- fit_single_exp_nocovar(
data = dat_single_trial,
params = m_params_nocovar,
summarize_fit = TRUE
)
print(fit_single)