mtarstr {BMTAR} | R Documentation |
Estimation of structural parameters of MTAR model
Description
Estimate structural and non-structural parameters of a MTAR model when the number of regimes is fixed.
Usage
mtarstr(ini_obj, level = 0.95, niter = 1000, burn = NULL, chain = FALSE,
r_init = NULL, parallel = FALSE)
Arguments
ini_obj |
class “ |
level |
numeric type, confident interval for estimations. Default 0.95 |
burn |
numeric type, number of initial runs. Default NULL (30% of niter) |
niter |
numeric type, number of runs of MCMC. Default 1000 |
chain |
logical type, if return chains of parameters. Default FALSE |
r_init |
numeric type of length l - 1. If r not known, starting value of the chain. Default NULL |
parallel |
logical type, if package |
Details
If the number of regimes l
is known or fixed, we can estimate other structural parameters of the MTAR model: Thresholds(r_1,\cdots,r_{l-1}
), and autoregressive orders(p_j,q_j,d_j
). Of course, the non-structural parameters are also estimated. The problem of estimation the autoregressive orders is addressed to the problem of Bayesian variable selection in regression using Gibbs Variable selection(GVS) or Kuo and Mallick Methodologies. Samples of the full conditional distribution for Threshold values are extracted using Random Walk Metropolis-Hastings Algorithm.
Value
Return a list type object of class “regime_model
”
Nj |
number of observations in each regime |
estimates |
list for each regime with confident interval and mean value of the parameters |
regime |
“ |
Chain |
if chain TRUE list type object with parameters chains |
fitted.values |
matrix type object with fitted.values of the estimated model |
residuals |
matrix type object with residuals of the estimated model |
logLikj |
log-likelihood of each regime with final estimations |
data |
list type object $Yt and $Ut = (Zt,Xt) |
r |
final threshold value estimation with acceptance percentage |
orders |
list type object with names (pj,qj,dj) final estimations |
Author(s)
Valeria Bejarano vbejaranos@unal.edu.co, Sergio Calderon sacalderonv@unal.edu.co & Andrey Rincon adrincont@unal.edu.co
References
Calderon, S. and Nieto, F. (2017) Bayesian analysis of multivariate threshold autoregress models with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758.
Examples
data("datasim")
data = datasim
# KUO method
initial = mtarinipars(tsregime_obj = data$Sim,method = 'KUO',
list_model = list(pars = list(l = 2),orders = list(pj = c(2,2))))
estruc = mtarstr(ini_obj = initial,niter = 500,chain = TRUE)
autoplot.regime_model(estruc,1)
autoplot.regime_model(estruc,2)
autoplot.regime_model(estruc,3)
autoplot.regime_model(estruc,4)
autoplot.regime_model(estruc,5)
# method can also be 'SSVS'