mtarmissing {BMTAR} | R Documentation |
Estimation of missing values of observed, covariate and threshold processes
Description
Estimation using Bayesian methodology of missing values in observed(output), covariate and threshold processes.
Usage
mtarmissing(ini_obj,niter = 1000, chain = FALSE, level = 0.95,
burn = NULL, cU = 0.5, b = NULL)
Arguments
ini_obj |
class “ |
niter |
numeric type, number of runs of MCMC. Default 1000 |
chain |
logical type, if return chains of parameters. Default FALSE |
level |
numeric type, confident interval for estimations. Default 0.95 |
burn |
numeric type, number of initial runs. Default NULL (10% of niter) |
cU |
numeric type, coefficient of the diagonal covariance matrix of process Ut = (Zt,Xt). Default 0.5 |
b |
numeric type greater or equal 1, autoregressive order of Ut = (Zt,Xt). Default NULL meaning 1 |
Details
The MTAR model
Y_t= \phi^{(j)}_{0}+ \sum_{i=1}^{p_j} \phi_{i}^{(j)}Y_{t-i}+ \sum_{i=1}^{q_j}\beta_{i}^{(j)}X_{t-i} + \sum{i=1}^{d_j}\delta_{i}^{(j)}Z_{t-i} +\Sigma_{(j)}^{1/2} \epsilon_{t} if r_{j-1}< Z_t \le r_{j},
is written into a state space model with regime-switching where the matrices depend on the threshold variable. In order to estimate the missing data in the observed vector Y_t
, it is necessary to obtain samples of the full conditional distribution of the state vector \alpha_t
, for all times t=1,\cdots,T
using Kalman Filter. It is assumed that the process U_t=(X_t,Z_t)
is a Markov chain, and in order to get samples of the full conditional distribution of U_t, t=1,\cdots,T
, it is supposed that kernel and initial distribution
are Gaussian for simplicity. However, in the next updates, we are going to get flexibility at this point.
Value
Return list type object of class “regime_missing
”
tsregime |
ini_obj$tsregime_obj with estimated observations |
estimates |
confident interval and mean of estimated missing values |
Chain |
if chain TRUE, chains of the estimated missing values |
Author(s)
Valeria Bejarano vbejaranos@unal.edu.co, Sergio Calderon sacalderonv@unal.edu.co & Andrey Rincon adrincont@unal.edu.co
References
Calderon, S. and Nieto, F. (2017) Bayesian analysis of multivariate threshold autoregress models with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758.
Examples
data("datasim")
yt = datasim$Sim
# some missing data
data_yt = yt$Yt
data_zt = yt$Zt
posNA = sample(c(1:500),8)
data_yt[c(posNA),] = c(NA,NA)
posNA = sample(c(1:500),8)
data_zt[c(posNA)] = NA
data_final = tsregime(data_yt,data_zt,r = yt$r)
autoplot.tsregime(data_final,1)
autoplot.tsregime(data_final,2)
initial = mtarinipars(tsregime_obj = data_final,
list_model = list(pars = list(l = 2,r = datasim$Sim$r,
orders = list(pj = c(1,1), qj = c(0,0),dj = c(0,0)))))
missingest = mtarmissing(ini_obj = initial,chain = TRUE,
niter = 500,burn = 500)
print(missingest)
autoplot.regime_missing(missingest,1)
datasim$Sim$Yt[is.na(data_yt[,1]),]
missingest$tsregime$Yt[is.na(data_yt[,1]),]