mtaregime {BMTAR} | R Documentation |
Object class “regime
” creation
Description
Create an object of class “regime
” given nonstructural and structural parameters for each regime.
Usage
mtaregime(orders = list(p = 1,q = 0,d = 0), cs = NULL, Phi,
Beta = NULL, Delta = NULL, Sigma)
Arguments
orders |
list type object with names (p,q,d), number of lags of Yt, Xt and Zt, respectively. Default p = 1, q = 0, d = 0 |
cs |
matrix type object, the constant term of the regime specification. Default NULL |
Phi |
list type object with names (phi1, ..., phip), each one a matrix |
Beta |
list type object with names (beta1, ..., betaq), each one a matrix |
Delta |
list type object with names (delta1, ..., deltad), each one a matrix |
Sigma |
a positive-definite symmetric matrix |
Details
Causes creation of the object class “regime
”. Sigma matrix corresponds to \Sigma
(root of the covariance matrix). When cs is not specified or only matrices are delivered for some lags, the function assumes unspecified 0 (matrix). Rows number in the Phi, Beta and Delta matrix should be the same (k dimension of variables in Yt).
Value
Return list type object of class “regime
” with the values of the arguments
Author(s)
Valeria Bejarano vbejaranos@unal.edu.co & Andrey Rincon adrincont@unal.edu.co
References
Calderon, S. and Nieto, F. (2017) Bayesian analysis of multivariate threshold autoregress models with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758.
See Also
Examples
# Creation of parameters for regimen with orders = c(2,1,1), nu = 1 y k = 2.
## previous objects
orders = list(p = 2,q = 1,d = 1)
Phi = list(phi2 = matrix(c(0.1,0.6,-0.4,0.5),2,2, byrow = TRUE))
Beta = list(beta1 = matrix(c(0.3,-0.4),2, 1))
Delta = list(delta1 = matrix(c(0.6,1),2,1))
Sigma = matrix(c(1,0.6,0.6,1.5),2,2,byrow = TRUE)
cs = matrix(c(1,-1),nrow = 2)
## creacion de la clase regime
Ri = mtaregime(orders = orders,Phi = Phi,Beta = Beta,Delta = Delta,
Sigma = Sigma,cs = cs)
class(Ri)