| BMTmoments {BMT} | R Documentation |
The BMT Distribution Moments, Moment-Generating Function and Characteristic Function.
Description
Any raw, central or standarised moment, the moment-generating
function and the characteristic function for the BMT distribution, with
p3 and p4 tails weights (\kappa_l and \kappa_r)
or asymmetry-steepness parameters (\zeta and \xi) and p1
and p2 domain (minimum and maximum) or location-scale (mean and
standard deviation) parameters.
Usage
BMTmoment(p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1,
type.p.1.2 = "c-d", order, type = "standardised", method = "quadrature")
BMTmgf(s, p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1,
type.p.1.2 = "c-d")
BMTchf(s, p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1,
type.p.1.2 = "c-d")
mBMT(order, p3, p4, type.p.3.4, p1, p2, type.p.1.2)
Arguments
p3, p4 |
tails weights ( |
type.p.3.4 |
type of parametrization asociated to p3 and p4. "t w" means tails weights parametrization (default) and "a-s" means asymmetry-steepness parametrization. |
p1, p2 |
domain (minimum and maximum) or location-scale (mean and standard deviation) parameters of the BMT ditribution. |
type.p.1.2 |
type of parametrization asociated to p1 and p2. "c-d" means domain parametrization (default) and "l-s" means location-scale parametrization. |
order |
order of the moment. |
type |
type of the moment: raw, central or standardised (default). |
method |
method to obtain the moment: exact formula or Chebyshev-Gauss quadrature (default). |
s |
variable for the moment-generating and characteristic functions. |
Details
See References.
Value
BMTmoment gives any raw, central or standarised moment,
BMTmgf the moment-generating function and BMTchf the
characteristic function
The arguments are recycled to the length of the result. Only the first
elements of type.p.3.4, type.p.1.2, type and
method are used.
If type.p.3.4 == "t w", p3 < 0 and p3 > 1 are errors
and return NaN.
If type.p.3.4 == "a-s", p3 < -1 and p3 > 1 are errors
and return NaN.
p4 < 0 and p4 > 1 are errors and return NaN.
If type.p.1.2 == "c-d", p1 >= p2 is an error and returns
NaN.
If type.p.1.2 == "l-s", p2 <= 0 is an error and returns
NaN.
Author(s)
Camilo Jose Torres-Jimenez [aut,cre] cjtorresj@unal.edu.co
References
Torres-Jimenez, C. J. and Montenegro-Diaz, A. M. (2017, September), An alternative to continuous univariate distributions supported on a bounded interval: The BMT distribution. ArXiv e-prints.
Torres-Jimenez, C. J. (2018), The BMT Item Response Theory model: A new skewed distribution family with bounded domain and an IRT model based on it, PhD thesis, Doctorado en ciencias - Estadistica, Universidad Nacional de Colombia, Sede Bogota.
See Also
BMTcentral, BMTdispersion,
BMTskewness, BMTkurtosis for specific
descriptive measures or moments.
Examples
layout(matrix(1:4, 2, 2, TRUE))
s <- seq(-1, 1, length.out = 100)
# BMT on [0,1] with left tail weight equal to 0.25 and
# right tail weight equal to 0.75
BMTmoment(0.25, 0.75, order = 5) # hyperskewness by Gauss-Legendre quadrature
BMTmoment(0.25, 0.75, order = 5, method = "exact") # hyperskewness by exact formula
mgf <- BMTmgf(s, 0.25, 0.75) # moment-generation function
plot(s, mgf, type="l")
chf <- BMTchf(s, 0.25, 0.75) # characteristic function
# BMT on [0,1] with asymmetry coefficient equal to 0.5 and
# steepness coefficient equal to 0.5
BMTmoment(0.5, 0.5, "a-s", order = 5)
BMTmoment(0.5, 0.5, "a-s", order = 5, method = "exact")
mgf <- BMTmgf(s, 0.5, 0.5, "a-s")
plot(s, mgf, type="l")
chf <- BMTchf(s, 0.5, 0.5, "a-s")
# BMT on [-1.783489, 3.312195] with
# left tail weight equal to 0.25 and
# right tail weight equal to 0.75
BMTmoment(0.25, 0.75, "t w", -1.783489, 3.312195, "c-d", order = 5)
BMTmoment(0.25, 0.75, "t w", -1.783489, 3.312195, "c-d", order = 5, method = "exact")
mgf <- BMTmgf(s, 0.25, 0.75, "t w", -1.783489, 3.312195, "c-d")
plot(s, mgf, type="l")
chf <- BMTchf(s, 0.25, 0.75, "t w", -1.783489, 3.312195, "c-d")
# BMT with mean equal to 0, standard deviation equal to 1,
# asymmetry coefficient equal to 0.5 and
# steepness coefficient equal to 0.5
BMTmoment(0.5, 0.5, "a-s", 0, 1, "l-s", order = 5)
BMTmoment(0.5, 0.5, "a-s", 0, 1, "l-s", order = 5, method = "exact")
mgf <- BMTmgf(s, 0.5, 0.5, "a-s", 0, 1, "l-s")
plot(s, mgf, type="l")
chf <- BMTchf(s, 0.5, 0.5, "a-s", 0, 1, "l-s")