BMTmoments {BMT} | R Documentation |
The BMT Distribution Moments, Moment-Generating Function and Characteristic Function.
Description
Any raw, central or standarised moment, the moment-generating
function and the characteristic function for the BMT distribution, with
p3
and p4
tails weights (\kappa_l
and \kappa_r
)
or asymmetry-steepness parameters (\zeta
and \xi
) and p1
and p2
domain (minimum and maximum) or location-scale (mean and
standard deviation) parameters.
Usage
BMTmoment(p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1,
type.p.1.2 = "c-d", order, type = "standardised", method = "quadrature")
BMTmgf(s, p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1,
type.p.1.2 = "c-d")
BMTchf(s, p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1,
type.p.1.2 = "c-d")
mBMT(order, p3, p4, type.p.3.4, p1, p2, type.p.1.2)
Arguments
p3 , p4 |
tails weights ( |
type.p.3.4 |
type of parametrization asociated to p3 and p4. "t w" means tails weights parametrization (default) and "a-s" means asymmetry-steepness parametrization. |
p1 , p2 |
domain (minimum and maximum) or location-scale (mean and standard deviation) parameters of the BMT ditribution. |
type.p.1.2 |
type of parametrization asociated to p1 and p2. "c-d" means domain parametrization (default) and "l-s" means location-scale parametrization. |
order |
order of the moment. |
type |
type of the moment: raw, central or standardised (default). |
method |
method to obtain the moment: exact formula or Chebyshev-Gauss quadrature (default). |
s |
variable for the moment-generating and characteristic functions. |
Details
See References.
Value
BMTmoment
gives any raw, central or standarised moment,
BMTmgf
the moment-generating function and BMTchf
the
characteristic function
The arguments are recycled to the length of the result. Only the first
elements of type.p.3.4
, type.p.1.2
, type
and
method
are used.
If type.p.3.4 == "t w"
, p3 < 0
and p3 > 1
are errors
and return NaN
.
If type.p.3.4 == "a-s"
, p3 < -1
and p3 > 1
are errors
and return NaN
.
p4 < 0
and p4 > 1
are errors and return NaN
.
If type.p.1.2 == "c-d"
, p1 >= p2
is an error and returns
NaN
.
If type.p.1.2 == "l-s"
, p2 <= 0
is an error and returns
NaN
.
Author(s)
Camilo Jose Torres-Jimenez [aut,cre] cjtorresj@unal.edu.co
References
Torres-Jimenez, C. J. and Montenegro-Diaz, A. M. (2017, September), An alternative to continuous univariate distributions supported on a bounded interval: The BMT distribution. ArXiv e-prints.
Torres-Jimenez, C. J. (2018), The BMT Item Response Theory model: A new skewed distribution family with bounded domain and an IRT model based on it, PhD thesis, Doctorado en ciencias - Estadistica, Universidad Nacional de Colombia, Sede Bogota.
See Also
BMTcentral
, BMTdispersion
,
BMTskewness
, BMTkurtosis
for specific
descriptive measures or moments.
Examples
layout(matrix(1:4, 2, 2, TRUE))
s <- seq(-1, 1, length.out = 100)
# BMT on [0,1] with left tail weight equal to 0.25 and
# right tail weight equal to 0.75
BMTmoment(0.25, 0.75, order = 5) # hyperskewness by Gauss-Legendre quadrature
BMTmoment(0.25, 0.75, order = 5, method = "exact") # hyperskewness by exact formula
mgf <- BMTmgf(s, 0.25, 0.75) # moment-generation function
plot(s, mgf, type="l")
chf <- BMTchf(s, 0.25, 0.75) # characteristic function
# BMT on [0,1] with asymmetry coefficient equal to 0.5 and
# steepness coefficient equal to 0.5
BMTmoment(0.5, 0.5, "a-s", order = 5)
BMTmoment(0.5, 0.5, "a-s", order = 5, method = "exact")
mgf <- BMTmgf(s, 0.5, 0.5, "a-s")
plot(s, mgf, type="l")
chf <- BMTchf(s, 0.5, 0.5, "a-s")
# BMT on [-1.783489, 3.312195] with
# left tail weight equal to 0.25 and
# right tail weight equal to 0.75
BMTmoment(0.25, 0.75, "t w", -1.783489, 3.312195, "c-d", order = 5)
BMTmoment(0.25, 0.75, "t w", -1.783489, 3.312195, "c-d", order = 5, method = "exact")
mgf <- BMTmgf(s, 0.25, 0.75, "t w", -1.783489, 3.312195, "c-d")
plot(s, mgf, type="l")
chf <- BMTchf(s, 0.25, 0.75, "t w", -1.783489, 3.312195, "c-d")
# BMT with mean equal to 0, standard deviation equal to 1,
# asymmetry coefficient equal to 0.5 and
# steepness coefficient equal to 0.5
BMTmoment(0.5, 0.5, "a-s", 0, 1, "l-s", order = 5)
BMTmoment(0.5, 0.5, "a-s", 0, 1, "l-s", order = 5, method = "exact")
mgf <- BMTmgf(s, 0.5, 0.5, "a-s", 0, 1, "l-s")
plot(s, mgf, type="l")
chf <- BMTchf(s, 0.5, 0.5, "a-s", 0, 1, "l-s")