BLRPM.sim {BLRPM} | R Documentation |
Simulating precipitation with the BLRPM
Description
BLRPM.sim
is the main function for simulating precipitation with the Bartlett-Lewis rectangular pulse model.
It generates storms and cells using the given five BLRPM parameters lambda, gamma, beta, eta, mux
for a given
simulation time t.sim
. The function BLRPM.sim
then accumulates a precipitation time series of length
t.akk
(typically the same as t.sim) with an accumulation time step interval
from the generated
storms and cells. An offset
can be used to delay the precipitation time series for initialization reasons.
BLRPM.sim
returns a list of different variables and data.frames: Storms, Cells, Stepfun, Precip, time
.
Usage
BLRPM.sim(lambda,gamma,beta,eta,mux,t.sim,t.acc,interval,offset)
Arguments
lambda |
|
gamma |
|
beta |
|
eta |
|
mux |
|
t.sim |
|
t.acc |
|
interval |
|
offset |
|
Value
$storms returns data.frame
containing information about storms: start, end, number of cells
$cells returns data.frame
containing information about cells: start, end, intensity, storm index
$sfn returns stepfunction
used to accumulate precipitation time series
$RR returns vector
of accumulated precipitation with time step interval
[mm/interval]
$time returns vector
of time steps [interval]
Author(s)
Christoph Ritschel christoph.ritschel@met.fu-berlin.de
Examples
lambda <- 4/240
gamma <- 1/10
beta <- 0.3
eta <- 2
mux <- 4
t.sim <- 240
t.acc <- t.sim
interval <- 1
offset <- 0
simulation <- BLRPM.sim(lambda,gamma,beta,eta,mux,t.sim,t.acc=t.sim,interval,offset)