| BLRPM.sim {BLRPM} | R Documentation |
Simulating precipitation with the BLRPM
Description
BLRPM.sim is the main function for simulating precipitation with the Bartlett-Lewis rectangular pulse model.
It generates storms and cells using the given five BLRPM parameters lambda, gamma, beta, eta, mux for a given
simulation time t.sim. The function BLRPM.sim then accumulates a precipitation time series of length
t.akk (typically the same as t.sim) with an accumulation time step interval from the generated
storms and cells. An offset can be used to delay the precipitation time series for initialization reasons.
BLRPM.sim returns a list of different variables and data.frames: Storms, Cells, Stepfun, Precip, time.
Usage
BLRPM.sim(lambda,gamma,beta,eta,mux,t.sim,t.acc,interval,offset)
Arguments
lambda |
|
gamma |
|
beta |
|
eta |
|
mux |
|
t.sim |
|
t.acc |
|
interval |
|
offset |
|
Value
$storms returns data.frame containing information about storms: start, end, number of cells
$cells returns data.frame containing information about cells: start, end, intensity, storm index
$sfn returns stepfunction used to accumulate precipitation time series
$RR returns vector of accumulated precipitation with time step interval [mm/interval]
$time returns vector of time steps [interval]
Author(s)
Christoph Ritschel christoph.ritschel@met.fu-berlin.de
Examples
lambda <- 4/240
gamma <- 1/10
beta <- 0.3
eta <- 2
mux <- 4
t.sim <- 240
t.acc <- t.sim
interval <- 1
offset <- 0
simulation <- BLRPM.sim(lambda,gamma,beta,eta,mux,t.sim,t.acc=t.sim,interval,offset)