BLR {BLR} | R Documentation |
Bayesian Linear Regression
Description
The BLR (‘Bayesian Linear Regression’) function was designed to fit parametric regression models using different types of shrinkage methods. An earlier version of this program was presented in de los Campos et al. (2009).
Usage
BLR(y, XF, XR, XL, GF, prior, nIter, burnIn, thin,thin2,saveAt,
minAbsBeta,weights)
Arguments
y |
(numeric, |
XF |
(numeric, |
XR |
(numeric, |
XL |
(numeric, |
GF |
(list) providing an |
weights |
(numeric, |
nIter , burnIn , thin |
(integer) the number of iterations, burn-in and thinning. |
saveAt |
(string) this may include a path and a pre-fix that will be added to the name of the files that are saved as the program runs. |
prior |
(list) containing the following elements,
|
thin2 |
This value controls wether the running means are saved to disk or not. If thin2 is greater than nIter the running
means are not saved (default, thin2= |
minAbsBeta |
The minimum absolute value of the components of |
Details
The program runs a Gibbs sampler for the Bayesian regression model described below.
Likelihood. The equation for the data is:
\begin{array}{lr}
\boldsymbol y= \boldsymbol 1 \mu + \boldsymbol X_F \boldsymbol \beta_F + \boldsymbol X_R \boldsymbol \beta_R + \boldsymbol X_L \boldsymbol \beta_L + \boldsymbol{Zu} + \boldsymbol \varepsilon & (1)
\end{array}
where \boldsymbol y
, the response is a n \times 1
vector (NAs allowed); \mu
is
an intercept; \boldsymbol X_F, \boldsymbol X_R, \boldsymbol X_L
and \boldsymbol Z
are incidence matrices
used to accommodate different
types of effects (see below), and; \boldsymbol \varepsilon
is a vector of model residuals assumed to be
distributed as \boldsymbol \varepsilon \sim N(\boldsymbol 0,Diag(\sigma_{\boldsymbol \varepsilon}^2/w_i^2))
,
here \sigma_{\boldsymbol \varepsilon}^2
is an (unknown)
variance parameter and w_i
are (known) weights that allow for heterogeneous-residual variances.
Any of the elements in the right-hand side of the linear predictor, except \mu
and \boldsymbol \varepsilon
, can be omitted;
by default the program runs an intercept model.
Prior. The residual variance is assigned a scaled inverse-\chi^2
prior with degree of freedom and scale parameter
provided by the user, that is, \sigma_{\boldsymbol \varepsilon}^2 \sim \chi^{-2} (\sigma_{\boldsymbol \varepsilon}^2 | df_{\boldsymbol \varepsilon}, S_{\boldsymbol \varepsilon})
. The regression coefficients \left\{\mu, \boldsymbol \beta_F, \boldsymbol \beta_R, \boldsymbol \beta_L, \boldsymbol u \right\}
are assigned priors
that yield different type of shrinkage. The intercept and the vector of regression coefficients \boldsymbol \beta_F
are assigned flat priors
(i.e., estimates are not shrunk). The vector of regression coefficients \boldsymbol \beta_R
is assigned a
Gaussian prior with variance common to all effects, that is,
\beta_{R,j} \mathop \sim \limits^{iid} N(0, \sigma_{\boldsymbol \beta_R}^2)
. This prior is
the Bayesian counterpart of Ridge Regression. The variance parameter \sigma_{\boldsymbol \beta_R}^2
,
is treated as unknown and it is assigned a scaled inverse-\chi^2
prior, that is,
\sigma_{\boldsymbol \beta_R}^2 \sim \chi^{-2} (\sigma_{\boldsymbol \beta_R}^2 | df_{\boldsymbol \beta_R}, S_{\boldsymbol \beta_R})
with degrees of freedom
df_{\boldsymbol \beta_R}
, and scale S_{\boldsymbol \beta_R}
provided by the user.
The vector of regression coefficients \boldsymbol \beta_L
is treated as in
the Bayesian LASSO of Park and Casella (2008). Specifically,
p(\boldsymbol \beta_L, \boldsymbol \tau^2, \lambda | \sigma_{\boldsymbol \varepsilon}^2) = \left\{\prod_k N(\beta_{L,k} | 0, \sigma_{\boldsymbol \varepsilon}^2 \tau_k^2) Exp\left(\tau_k^2 | \lambda^2\right) \right\} p(\lambda),
where, Exp(\cdot|\cdot)
is an exponential prior and p(\lambda)
can either be: (a)
a mass-point at some value (i.e., fixed \lambda
); (b) p(\lambda^2) \sim Gamma(r,\delta)
this
is the prior suggested by Park and Casella (2008); or, (c) p(\lambda | \max, \alpha_1, \alpha_2) \propto Beta\left(\frac{\lambda}{\max} | \alpha_1,\alpha_2 \right)
, see de los Campos et al. (2009) for details. It can be shown that the marginal prior of regression coefficients \beta_{L,k}, \int N(\beta_{L,k} | 0, \sigma_{\boldsymbol \varepsilon}^2 \tau_k^2) Exp\left(\tau_k^2 | \lambda^2\right) \partial \tau_k^2
, is Double-Exponential. This prior has thicker tails and higher peak of mass at zero than the Gaussian prior used for \boldsymbol \beta_R
, inducing a different type of shrinkage.
The vector \boldsymbol u
is used to model the so called ‘infinitesimal effects’, and is assigned a prior \boldsymbol u \sim N(\boldsymbol 0, \boldsymbol A\sigma_{\boldsymbol u}^2)
,
where, \boldsymbol A
is a positive-definite matrix (usually a relationship matrix computed from a pedigree) and \sigma_{\boldsymbol u}^2
is an unknow variance, whose prior is
\sigma_{\boldsymbol u}^2 \sim \chi^{-2} (\sigma_{\boldsymbol u}^2 | df_{\boldsymbol u}, S_{\boldsymbol u})
.
Collecting the above mentioned assumptions, the posterior distribution of model unknowns,
\boldsymbol \theta= \left\{\mu, \boldsymbol \beta_F, \boldsymbol \beta_R, \sigma_{\boldsymbol \beta_R}^2, \boldsymbol \beta_L, \boldsymbol \tau^2, \lambda, \boldsymbol u, \sigma_{\boldsymbol u}^2, \sigma_{\boldsymbol \varepsilon}^2, \right\}
, is,
\begin{array}{lclr}
p(\boldsymbol \theta | \boldsymbol y) & \propto & N\left( \boldsymbol y | \boldsymbol 1 \mu + \boldsymbol X_F \boldsymbol \beta_F + \boldsymbol X_R \boldsymbol \beta_R + \boldsymbol X_L \boldsymbol \beta_L + \boldsymbol{Zu}; Diag\left\{ \frac{\sigma_\varepsilon^2}{w_i^2}\right\}\right) & \\
& & \times \left\{ \prod\limits_j N\left(\beta_{R,j} | 0, \sigma_{\boldsymbol \beta_R}^2 \right) \right\} \chi^{-2} \left(\sigma_{\boldsymbol \beta_R}^2 | df_{\boldsymbol \beta_R}, S_{\boldsymbol \beta_R}\right) & \\
& & \times \left\{ \prod\limits_k N \left( \beta_{L,k} |0,\sigma_{\boldsymbol \varepsilon}^2 \tau_k^2 \right) Exp \left(\tau_k^2 | \lambda^2\right)\right\} p(\lambda) & (2)\\
& & \times N(\boldsymbol u | \boldsymbol 0,\boldsymbol A\sigma_{\boldsymbol u}^2) \chi^{-2} (\sigma_{\boldsymbol u}^2 | df_{\boldsymbol u}, S_{\boldsymbol u}) \chi^{-2} (\sigma_{\boldsymbol \varepsilon}^2 | df_{\boldsymbol \varepsilon}, S_{\boldsymbol \varepsilon}) &
\end{array}
Value
A list with posterior means, posterior standard deviations, and the parameters used to fit the model:
$yHat |
the posterior mean of |
$SD.yHat |
the corresponding posterior standard deviation. |
$mu |
the posterior mean of the intercept. |
$varE |
the posterior mean of |
$bR |
the posterior mean of |
$SD.bR |
the corresponding posterior standard deviation. |
$varBr |
the posterior mean of |
$bL |
the posterior mean of |
$SD.bL |
the corresponding posterior standard deviation. |
$tau2 |
the posterior mean of |
$lambda |
the posterior mean of |
$u |
the posterior mean of |
$SD.u |
the corresponding posterior standard deviation. |
$varU |
the posterior mean of |
$fit |
a list with evaluations of effective number of parameters and DIC (Spiegelhalter et al., 2002). |
$whichNa |
a vector indicating which entries in |
$prior |
a list containig the priors used during the analysis. |
$weights |
vector of weights. |
$fit |
list containing the following elements,
|
$nIter |
the number of iterations made in the Gibbs sampler. |
$burnIn |
the nuber of iteratios used as burn-in. |
$thin |
the thin used. |
$y |
original data-vector. |
The posterior means returned by BLR are calculated after burnIn is passed and at a thin as specified by the user.
Save. The routine will save samples of \mu
, variance components and \lambda
and running means
(rm*.dat). Running means are computed using the thinning specified by
the user (see argument thin above); however these running means are
saved at a thinning specified by argument thin2 (by default, thin2=1 \times 10^{10}
so that running means are computed
as the sampler runs but not saved to the disc).
Author(s)
Gustavo de los Campos, Paulino Perez Rodriguez,
References
de los Campos G., H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi, K. Weigel and J. Cotes. 2009. Predicting Quantitative Traits with Regression Models for Dense Molecular Markers and Pedigree. Genetics 182: 375-385.
Park T. and G. Casella. 2008. The Bayesian LASSO. Journal of the American Statistical Association 103: 681-686.
Spiegelhalter, D.J., N.G. Best, B.P. Carlin and A. van der Linde. 2002. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B (Statistical Methodology) 64 (4): 583-639.
Examples
########################################################################
##Example 1:
########################################################################
if(FALSE){
rm(list=ls())
library(BLR)
data(wheat) #Loads the wheat dataset
y=Y[,1]
### Creates a testing set with 100 observations
whichNa<-sample(1:length(y),size=100,replace=FALSE)
yNa<-y
yNa[whichNa]<-NA
### Runs the Gibbs sampler
fm<-BLR(y=yNa,XL=X,GF=list(ID=1:nrow(A),A=A),
prior=list(varE=list(df=3,S=0.25),
varU=list(df=3,S=0.63),
lambda=list(shape=0.52,rate=1e-4,
type='random',value=30)),
nIter=5500,burnIn=500,thin=1,
saveAt="example_")
MSE.tst<-mean((fm$yHat[whichNa]-y[whichNa])^2)
MSE.tst
MSE.trn<-mean((fm$yHat[-whichNa]-y[-whichNa])^2)
MSE.trn
COR.tst<-cor(fm$yHat[whichNa],y[whichNa])
COR.tst
COR.trn<-cor(fm$yHat[-whichNa],y[-whichNa])
COR.trn
plot(fm$yHat~y,xlab="Phenotype",
ylab="Pred. Gen. Value" ,cex=.8)
points(x=y[whichNa],y=fm$yHat[whichNa],col=2,cex=.8,pch=19)
x11()
plot(scan('example_varE.dat'),type="o",
ylab=expression(paste(sigma[epsilon]^2)))
}
########################################################################
#Example 2: Ten fold, Cross validation, environment 1,
########################################################################
if(FALSE){
rm(list=ls())
library(BLR)
data(wheat) #Loads the wheat dataset
nIter<-1500 #For real data sets more samples are needed
burnIn<-500
thin<-10
folds<-10
y<-Y[,1]
priorBL<-list(
varE=list(df=3,S=2.5),
varU=list(df=3,S=0.63),
lambda = list(shape=0.52,rate=1e-5,value=20,type='random')
)
set.seed(123) #Set seed for the random number generator
sets<-rep(1:10,60)[-1]
sets<-sets[order(runif(nrow(A)))]
COR.CV<-rep(NA,times=(folds+1))
names(COR.CV)<-c(paste('fold=',1:folds,sep=''),'Pooled')
w<-rep(1/nrow(A),folds) ## weights for pooled correlations and MSE
yHatCV<-numeric()
for(fold in 1:folds)
{
yNa<-y
whichNa<-which(sets==fold)
yNa[whichNa]<-NA
prefix<-paste('PM_BL','_fold_',fold,'_',sep='')
fm<-BLR(y=yNa,XL=X,GF=list(ID=(1:nrow(A)),A=A),prior=priorBL,
nIter=nIter,burnIn=burnIn,thin=thin)
yHatCV[whichNa]<-fm$yHat[fm$whichNa]
w[fold]<-w[fold]*length(fm$whichNa)
COR.CV[fold]<-cor(fm$yHat[fm$whichNa],y[whichNa])
}
COR.CV[11]<-mean(COR.CV[1:10])
COR.CV
}
########################################################################