update_BLP_data {BLPestimatoR} | R Documentation |
Updates the set of linear, exogenous, random coefficient, share or mean utility variable in the data object.
Description
Updates the set of linear, exogenous, random coefficient, share or mean utility variable in the data object.
Usage
update_BLP_data(data_update, blp_data)
Arguments
data_update |
data.frame with variables to update (must contain the market_identifier and product_identifier variables as in |
blp_data |
data object created by the function |
Value
Returns an object of class blp_data
.
Examples
K<-2 #number of random coefficients
data <- simulate_BLP_dataset(nmkt = 25, nbrn = 20,
Xlin = c("price", "x1", "x2", "x3", "x4", "x5"),
Xexo = c("x1", "x2", "x3", "x4", "x5"),
Xrandom = paste0("x",1:K),instruments = paste0("iv",1:10),
true.parameters = list(Xlin.true.except.price = rep(0.2,5),
Xlin.true.price = -0.2,
Xrandom.true = rep(2,K),
instrument.effects = rep(2,10),
instrument.Xexo.effects = rep(1,5)),
price.endogeneity = list( mean.xi = -2,
mean.eita = 0,
cov = cbind( c(1,0.7), c(0.7,1))),
printlevel = 0, seed = 234234 )
model <- as.formula("shares ~ price + x1 + x2 + x3 + x4 + x5 |
x1 + x2 + x3 + x4 + x5 |
0+ x1 + x2 |
iv1 + iv2 + iv3 + iv4 + iv5 + iv6 + iv7 + iv8 +iv9 +iv10" )
blp_data <- BLP_data(model = model, market_identifier="cdid",
product_id = "prod_id",
productData = data,
integration_method = "MLHS" ,
integration_accuracy = 40,
integration_seed = 1)
new_data <- data.frame(price = seq(1,10,length.out=500),
x1 = seq(2,10,length.out=500),
cdid = sort(rep(1:25,20)),
prod_id = rep(1:20,25) )
blp_data_example_updated <-update_BLP_data(blp_data = blp_data,
data_update = new_data)
[Package BLPestimatoR version 0.3.4 Index]