| modelFrame {BIOdry} | R Documentation |
Dendroclimatic-fluctuations modeling
Description
This function develops recursive evaluation of functions for one-level modeling (FOLM) and LME detrending of dendroclimatic chronologies.
Usage
modelFrame(rd, fn = list("rtimes", "scacum", "amod"), lv = list(2,
1, 1), form = "tdForm", ...)
Arguments
rd |
|
fn |
|
lv |
|
form |
|
... |
Further arguments in |
Details
Defaults model fluctuations in
tree-ring width chronologies via recursive
implementation of four FOLM:
rtimes, scacum,
amod, and
frametoLme. Nevertheless,
other FOLM can be implemented to model
aridity-index fluctuations(see example with
climatic data). Processed chronologies are
detrended with lme function
and other nlme methods
. Internal algorithm uses
shiftFrame
arguSelect and
ringApply
functions. Consequently, arguments that are
not iterated over factor-level labels in the
processed data are specified in 'MoreArgs'
lists (see examples). Arguments in
modelFrame objects can be updated
with update function.
Value
Threefold list with fluctuations in fluc,
groupedData object in model, and model call in
call.
Author(s)
Wilson Lara <wilarhen@gmail.com>, Felipe Bravo <fbravo@pvs.uva.es>
References
Lara W., F. Bravo, D. Maguire. 2013. Modeling patterns between drought and tree biomass growth from dendrochronological data: A multilevel approach. Agric. For. Meteorol., 178-179:140-151.
Examples
##TRW chronology (mm) and inside-bark radii
data(Pchron,envir = environment())
## Parameters of allometric model to compute Diameter at Breast
## Height over bark (DBH, cm) from diameter inside bark (dib, cm)
## and Total Tree Biomass (TTB, kg tree -1 ) from DBH (Lara
## et. al. 2013):
biom_param <- c(2.87, 0.85, 0.05, 2.5)
## Modeling tree-biomass fluctuations while accounting for
## within-plot source variability (see defaults in "modelFrame"
## function)
trwf <- modelFrame(Pchron,
to = 'cm',
MoreArgs = list(mp = c(2,1, biom_param)),
log.t = FALSE,
on.time = FALSE)
## Climatic records:
data(Temp,envir = environment())
data(Prec,envir = environment())
## Aridity-index fluctuations:
aif <- modelFrame(rd = list(Prec, Temp),
fn = list('moveYr','wlai'),
lv = list('year','year'),
form = 'lmeForm')
summary(aif$'model')