plot_ts {BINCOR} | R Documentation |
Plot time series
Description
The plot_ts
function plot and compare the irregular
and the binned time series. plot_ts
has
several parameters that are described in the following lines.
Usage
plot_ts(ts1, ts2, bints1, bints2, varnamets1="", varnamets2="", colts1=1, colts2=1,
colbints1=2, colbints2=2, ltyts1=1, ltyts2=1, ltybints1=2, ltybints2=2,
device="screen", Hfig, Wfig, Hpdf, Wpdf, resfig, ofilename)
Arguments
ts1 , ts2 |
ts1 and ts2 are the unevenly spaced time series. |
bints1 , bints2 |
The bints1 and bints2 are the binned time series. |
varnamets1 , varnamets2 |
varnamets[1][2] are the names of the variables under study. |
colts1 , colts2 |
colts[1][2] are the colours for the time series (irregular) under study (by default both curves are in black). |
colbints1 , colbints2 |
colbints[1][2] are the colours of the binned time series (by default both curves are in red). |
ltyts1 , ltyts2 |
ltyts[1][2] are the type of lines to be plotted for the irregular time series (by default is 1, i.e., solid). 1 = solid, 2 = dashed, 3 = dotted, 4 = dot-dashed, 5 = long-dashed, 6 = double-dashed. |
ltybints1 , ltybints2 |
ltybints[1][2] are the type of lines to be plotted for the binned time series (by default is 2, i.e., dashed). 1 = solid, 2 = dashed, 3 = dotted, 4 = dot-dashed, 5 = long-dashed, 6 = double-dashed. |
device |
The type of the output device (by default the option is “screen”, and the other options are “jpg”, “png” and “pdf”). |
Hfig |
The height for the plot in “jpg” or “png” format. |
Wfig |
The width for the plot in “jpg” or “png” format. |
Hpdf |
The height for the plot in “pdf” format. |
Wpdf |
The width for the plot in “pdf” format. |
resfig |
resfig is the plot resolution in 'ppi' (by default R does not record a resolution in the image file, except for BMP), an adequate value could be 150 ppi. |
ofilename |
The output filename for the plot. |
Details
The plot_ts
function is used to plot the irregular vs.
the binned time series and this function uses the native R function “plot”
(package:graphics).
Value
Output:
Output plot: screen or 'ofilename + .png, .jpg or .pdf'.
Author(s)
Josué M. Polanco-Martínez (a.k.a. jomopo).
BC3 - Basque Centre for Climate Change, Bilbao, SPAIN.
EPOC UMR CNRS 5805 - U. de Bordeaux, Pessac, FRANCE.
Web1: https://scholar.google.es/citations?user=8djLIhcAAAAJ&hl=en.
Web2: http://www.researchgate.net/profile/Josue_Polanco-Martinez.
Email: josue.m.polanco@gmail.com
References
Polanco-Martínez, J.M., Medina-Elizalde, M.A., Sánchez Goñi, M.F., M. Mudelsee. (2018). BINCOR: an R package to estimate the correlation between two unevenly spaced series. Ms. under review (second round).
Examples
#####################################################################
#:: Figure 1 (Polanco-Martínez et al. (2018), (mimeo)).
#####################################################################
library("BINCOR")
#####################################################################
#:: Loading the time series under analysis: example 1 (ENSO vs. NHSST)
#####################################################################
data(ENSO)
data(NHSST)
#####################################################################
# Computing the binned time series though our bin_cor_function.R
#####################################################################
bincor.tmp <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")
binnedts <- bincor.tmp$Binned_time_series
#####################################################################
# Testing our plot_ts function
#####################################################################
# "Screen"
plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3",
"SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="screen")
# PDF format
plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3",
"SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="pdf",
Hpdf=6, Wpdf=9, resfig=300, ofilename="plot_ts_RAW_BIN_enso_sst")
# PNG format
plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3",
"SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="png",
Hfig=900, Wfig=1200, resfig=150, ofilename="plot_ts_RAW_BIN_enso_sst")
#####################################################################
#:: Figure 4 (Polanco-Martínez et al. (2017), (mimeo)).
#####################################################################
#####################################################################
#:: Loading the time series under analysis: example 2 (pollen ACER)
#####################################################################
data(MD04_2845_siteID31)
data(MD95_2039_siteID32)
#####################################################################
# Computing the binned time series though our bin_cor function
#####################################################################
bincor.tmp <- bin_cor(ID31.dat, ID32.dat, FLAGTAU=3, "salida_ACER_ABRUPT.tmp")
binnedts <- bincor.tmp$Binned_time_series
# To avoid NA's values
bin_ts1 <- na.omit(bincor.tmp$Binned_time_series[,1:2])
bin_ts2 <- na.omit(bincor.tmp$Binned_time_series[,c(1,3)])
#####################################################################
# Testing our plot_ts function: plot_ts.R
#####################################################################
# "Screen"
plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)",
"MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4,
device="screen")
# PDF format
plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)",
"MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4,
device="pdf", Hpdf=6, Wpdf=9, resfig=300, ofilename="ts_ACER_ABRUPT")
# PNG format
plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)",
"MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4,
device="png", Hfig=900, Wfig=1200, resfig=150, ofilename="ts_ACER_ABRUPT")