BIFIE.waldtest {BIFIEsurvey} | R Documentation |
Wald Tests for BIFIE Methods
Description
This function performs a Wald test for objects of classes
BIFIE.by
,
BIFIE.correl
, BIFIE.crosstab
, BIFIE.freq
,
BIFIE.linreg
, BIFIE.logistreg
and BIFIE.univar
.
Usage
BIFIE.waldtest(BIFIE.method, Cdes, rdes, type=NULL)
## S3 method for class 'BIFIE.waldtest'
summary(object,digits=4,...)
Arguments
BIFIE.method |
Object of classes |
Cdes |
Design matrix |
rdes |
Design vector |
type |
Only applies to |
object |
Object of class |
digits |
Number of digits for rounding output |
... |
Further arguments to be passed |
Details
The Wald test is conducted for a parameter vector \bold{\theta}
,
specifying the hypothesis C \bold{\theta}=r
. Statistical inference
is performed by using the D_1
and the D_2
statistic
(Enders, 2010, Ch. 8).
For objects of class bifie.univar
, only hypotheses with respect
to means are implemented.
Value
A list with following entries
stat.D |
Data frame with |
... |
More values |
References
Enders, C. K. (2010). Applied missing data analysis. Guilford Press.
See Also
survey::regTermTest
,
survey::anova.svyglm
,
car::linearHypothesis
Examples
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################
data(data.timss1)
data(data.timssrep)
# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
wgtrep=data.timssrep[, -1 ] )
#******************
#*** Model 1: Linear regression
res1 <- BIFIEsurvey::BIFIE.linreg( bdat, dep="ASMMAT", pre=c("one","books","migrant"),
group="female" )
summary(res1)
#*** Wald test which tests whether sigma and R^2 values are the same
res1$parnames # parameter names
pn <- res1$parnames ; PN <- length(pn)
Cdes <- matrix(0,nrow=2, ncol=PN)
colnames(Cdes) <- pn
# equality of R^2 ( R^2(female0) - R^2(female1)=0 )
Cdes[ 1, c("R^2_NA_female_0", "R^2_NA_female_1" ) ] <- c(1,-1)
# equality of sigma ( sigma(female0) - sigma(female1)=0)
Cdes[ 2, c("sigma_NA_female_0", "sigma_NA_female_1" ) ] <- c(1,-1)
# design vector
rdes <- rep(0,2)
# perform Wald test
wmod1 <- BIFIEsurvey::BIFIE.waldtest( BIFIE.method=res1, Cdes=Cdes, rdes=rdes )
summary(wmod1)
## Not run:
#******************
#*** Model 2: Correlations
# compute some correlations
res2a <- BIFIEsurvey::BIFIE.correl( bdat, vars=c("ASMMAT","ASSSCI","migrant","books"))
summary(res2a)
# test whether r(MAT,migr)=r(SCI,migr) and r(MAT,books)=r(SCI,books)
pn <- res2a$parnames; PN <- length(pn)
Cdes <- matrix( 0, nrow=2, ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1, c("ASMMAT_migrant", "ASSSCI_migrant") ] <- c(1,-1)
Cdes[ 2, c("ASMMAT_books", "ASSSCI_books") ] <- c(1,-1)
rdes <- rep(0,2)
# perform Wald test
wres2a <- BIFIEsurvey::BIFIE.waldtest( res2a, Cdes, rdes )
summary(wres2a)
#******************
#*** Model 3: Frequencies
# Number of books splitted by gender
res3a <- BIFIEsurvey::BIFIE.freq( bdat, vars=c("books"), group="female" )
summary(res3a)
# test whether book(cat4,female0)+book(cat5,female0)=book(cat4,female1)+book(cat5,female5)
pn <- res3a$parnames
PN <- length(pn)
Cdes <- matrix( 0, nrow=1, ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1, c("books_4_female_0", "books_5_female_0",
"books_4_female_1", "books_5_female_1" ) ] <- c(1,1,-1,-1)
rdes <- c(0)
# Wald test
wres3a <- BIFIEsurvey::BIFIE.waldtest( res3a, Cdes, rdes )
summary(wres3a)
#******************
#*** Model 4: Means
# math and science score splitted by gender
res4a <- BIFIEsurvey::BIFIE.univar( bdat, vars=c("ASMMAT","ASSSCI"), group="female")
summary(res4a)
# test whether there are significant gender differences in math and science
#=> multivariate ANOVA
pn <- res4a$parnames
PN <- length(pn)
Cdes <- matrix( 0, nrow=2, ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1, c("ASMMAT_female_0", "ASMMAT_female_1" ) ] <- c(1,-1)
Cdes[ 2, c("ASSSCI_female_0", "ASSSCI_female_1" ) ] <- c(1,-1)
rdes <- rep(0,2)
# Wald test
wres4a <- BIFIEsurvey::BIFIE.waldtest( res4a, Cdes, rdes )
summary(wres4a)
## End(Not run)