| BIFIE.data {BIFIEsurvey} | R Documentation |
Creates an Object of Class BIFIEdata
Description
This function creates an object of class BIFIEdata.
Finite sampling correction of statistical inferences can be
conducted by specifying appropriate input in the fayfac
argument.
Usage
BIFIE.data(data.list, wgt=NULL, wgtrep=NULL, fayfac=1, pv_vars=NULL,
pvpre=NULL, cdata=FALSE, NMI=FALSE)
## S3 method for class 'BIFIEdata'
summary(object,...)
## S3 method for class 'BIFIEdata'
print(x,...)
Arguments
data.list |
List of multiply imputed datasets. Can be also a list of list of imputed
datasets in case of nested multiple imputation. Then, the argument
|
wgt |
A string indicating the label of case weight or a vector containing all case weights. |
wgtrep |
Optional vector of replicate weights |
fayfac |
Fay factor for calculating standard errors, a numeric value. If finite sampling correction is requested, an appropriate vector input can be used (see Example 3). |
pv_vars |
Optional vector for names of plausible values, see
|
pvpre |
Optional vector for prefixes of plausible values, see
|
cdata |
An optional logical indicating whether the |
NMI |
Optional logical indicating whether |
object |
Object of class |
x |
Object of class |
... |
Further arguments to be passed |
Value
An object of class BIFIEdata saved in a non-compact
or compact way, see value cdata. The following entries are
included in the list:
datalistM |
Stacked list of imputed datasets (if |
wgt |
Vector with case weights |
wgtrep |
Matrix with replicate weights |
Nimp |
Number of imputed datasets |
N |
Number of observations in a dataset |
dat1 |
Last imputed dataset |
varnames |
Vector with variable names |
fayfac |
Fay factor. |
RR |
Number of replicate weights |
NMI |
Logical indicating whether the dataset is nested multiply imputed. |
cdata |
Logical indicating whether the |
Nvars |
Number of variables |
variables |
Data frame including some informations about variables.
All transformations are saved in the column |
datalistM_ind |
Data frame with response indicators
(if |
datalistM_imputed |
Data frame with imputed values
(if |
See Also
See BIFIE.data.transform for data transformations on
BIFIEdata objects.
For saving and loading BIFIEdata objects see
save.BIFIEdata.
For converting PIRLS/TIMSS or PISA datasets into BIFIEdata
objects see BIFIE.data.jack.
See the BIFIEdata2svrepdesign function for converting
BIFIEdata objects to objects used in the survey package.
Examples
#############################################################################
# EXAMPLE 1: Create BIFIEdata object with multiply-imputed TIMSS data
#############################################################################
data(data.timss1)
data(data.timssrep)
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
wgtrep=data.timssrep[, -1 ] )
summary(bdat)
# create BIFIEdata object in a compact way
bdat2 <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
wgtrep=data.timssrep[, -1 ], cdata=TRUE)
summary(bdat2)
## Not run:
#############################################################################
# EXAMPLE 2: Create BIFIEdata object with one dataset
#############################################################################
data(data.timss2)
# use first dataset with missing data from data.timss2
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss2[[1]], wgt=data.timss2[[1]]$TOTWGT)
## End(Not run)
#############################################################################
# EXAMPLE 3: BIFIEdata objects with finite sampling correction
#############################################################################
data(data.timss1)
data(data.timssrep)
#-----
# BIFIEdata object without finite sampling correction
bdat1 <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
wgtrep=data.timssrep[, -1 ] )
summary(bdat1)
#-----
# generate BIFIEdata object with finite sampling correction by adjusting
# the "fayfac" factor
bdat2 <- bdat1
#-- modify "fayfac" constant
fayfac0 <- bdat1$fayfac
# set fayfac=.75 for the first 50 replication zones (25% of students in the
# population were sampled) and fayfac=.20 for replication zones 51-75
# (meaning that 80% of students were sampled)
fayfac <- rep( fayfac0, bdat1$RR )
fayfac[1:50] <- fayfac0 * .75
fayfac[51:75] <- fayfac0 * .20
# include this modified "fayfac" factor in bdat2
bdat2$fayfac <- fayfac
summary(bdat2)
summary(bdat1)
#---- compare some univariate statistics
# no finite sampling correction
res1 <- BIFIEsurvey::BIFIE.univar( bdat1, vars="ASMMAT")
summary(res1)
# finite sampling correction
res2 <- BIFIEsurvey::BIFIE.univar( bdat2, vars="ASMMAT")
summary(res2)
## Not run:
#############################################################################
# EXAMPLE 4: Create BIFIEdata object with nested multiply imputed dataset
#############################################################################
data(data.timss4)
data(data.timssrep)
# nested imputed dataset, save it in compact format
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss4,
wgt=data.timss4[[1]][[1]]$TOTWGT, wgtrep=data.timssrep[, -1 ],
NMI=TRUE, cdata=TRUE )
summary(bdat)
## End(Not run)