BePloth {BGPhazard} | R Documentation |
Plots for the discrete Hazard and Survival Function Estimates
Description
Plots the resulting hazard function along with the survival function estimates defined by the Markov beta process (Nieto-Barajas and Walker, 2002).
Usage
BePloth(
M,
type.h = "dot",
add.survival = T,
intervals = T,
confidence = 0.95,
summary = FALSE
)
Arguments
M |
tibble. Contains the output generated by |
type.h |
character, "line" = plots the hazard rate of each interval joined by a line, "dot" = plots the hazard rate of each interval with a dot. |
add.survival |
logical, If |
intervals |
logical. If TRUE, plots confidence bands for the selected functions including Nelson-Aalen and/or Kaplan-Meier estimate. |
confidence |
Numeric. Confidence band width. |
summary |
Logical. If |
Details
This function returns estimators plots for the hazard rate as computed
by BeMRes
together with the Nelson-Aalen estimate along with their
confidence intervals for the data set given. Additionally, it plots the
survival function and the Kaplan-Meier estimate with their corresponding
credible intervals.
Value
SUM.h |
Numeric tibble. Summary for the mean, median, and a
|
SUM.S |
Numeric tibble. Summary for the mean, median, and a
|
References
- Nieto-Barajas, L. E. & Walker, S. G. (2002). Markov beta and gamma processes for modelling hazard rates. Scandinavian Journal of Statistics 29: 413-424.
See Also
Examples
## Simulations may be time intensive. Be patient.
## Example 1
# data(psych)
# timesP <- psych$time
# deltaP <- psych$death
# BEX1 <- BeMRes(timesP, deltaP, iterations = 3000, burn.in = 300, thinning = 1)
# BePloth(BEX1)
# sum <- BePloth(BEX1, type.h = "line", summary = T)
## Example 2
# data(gehan)
# timesG <- gehan$time[gehan$treat == "control"]
# deltaG <- gehan$cens[gehan$treat == "control"]
# BEX2 <- BeMRes(timesG, deltaG, type.c = 2, c.r = rep(50, 22))
# BePloth(BEX2)