The complementary Bell extended exponential distribution {BGFD} | R Documentation |
The complementary Bell extended exponential distribution
Description
Density, probability, quantile function, random generation, survival function, hazard rate function and maximum likelihood estimates from the complementary Bell extended exponential distribution.
Usage
dCBellEE(x, alpha, beta, lambda, log = FALSE)
pCBellEE(x, alpha, beta, lambda, log.p = FALSE, lower.tail = TRUE)
qCBellEE(p, alpha, beta, lambda, log.p = FALSE, lower.tail = TRUE)
rCBellEE(n, alpha, beta, lambda)
sCBellEE(x, alpha, beta, lambda, log.p = FALSE, lower.tail = TRUE)
hCBellEE(x, alpha, beta, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE)
mCBellEE(x, alpha, beta, lambda, method="B")
Arguments
x |
A vector of (non-negative integer) quantiles. |
p |
A vector of probablities. |
n |
The number of random values to be generated under the complementary Bell extended exponential distribution. |
lambda |
The strictly positive parameter of the Bell distribution ( |
alpha |
The strictly positive scale parameter of the baseline extended exponential distribution ( |
beta |
The strictly positive shape parameter of the baseline extended exponential distribution ( |
lower.tail |
if FALSE then 1-F(x) are returned and quantiles are computed 1-p. |
log |
if TRUE, probabilities p are given as log(p). |
log.p |
if TRUE, probabilities p are given for exp(p). |
method |
the procedure for optimizing the log-likelihood function after setting the intial values of the parameters and data values for which the complementary Bell extended exponential distribution is fitted. It could be "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", or "SANN". "BFGS" is set as the default. |
Details
The functions allow fitting the complementary Bell extended exponential distribution and evaluating the probability density function, cumulative distribution function, quantile function, random numbers, survival function, hazard rate function, and maximum likelihood estimates (MLEs) of the unknown parameters with standard error (SE) of the estimates. It also provides the goodness-of-fit measures such as the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), the minimum value of the negative log-likelihood function, Anderson-Darling (A) test, Cramer-Von-Mises (W) test, Kolmogorov-Smirnov test, P-value and convergence status.
Value
dCBellEE gives the (log) probability function. pCBellEE gives the (log) distribution function. qCBellEE gives the quantile function. rCBellEE generates random values. sCBellEE gives the survival function. hCBellEE gives the hazard rate function. mCBellEE gives the estimated parameters along with SE and goodness-of-fit measures.
Author(s)
Muhammad Imran and Michail Tsagris.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and Michail Tsagris mtsagris@uoc.gr.
References
Algarni, A. (2022). Group Acceptance Sampling Plan Based on New Compounded Three-Parameter Weibull Model. Axioms, 11(9): 438.
Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, 219-251.
Castellares, F., Ferrari, S. L., and Lemonte, A. J. (2018). On the Bell distribution and its associated regression model for count data. Applied Mathematical Modelling, 56, 172-185.
See Also
Examples
x<-rCBellEE(20,2,1,0.2)
dCBellEE(x,2,1,0.5)
pCBellEE(x,2,1,0.5)
qCBellEE(0.7,2,1,0.5)
sCBellEE(x,2,1,0.5)
hCBellEE(x,2,1,0.5)
mCBellEE(x, 0.2,0.1,0.8, method="B")