predict {BEKKs} | R Documentation |
Forecasting conditional volatilities with BEKK models
Description
Method for predicting a N-dimensional BEKK covariances.
Usage
## S3 method for class 'bekk'
predict(object, n.ahead = 1, ci = 0.95, ...)
## S3 method for class 'bekka'
predict(object, n.ahead = 1, ci = 0.95, ...)
## S3 method for class 'dbekk'
predict(object, n.ahead = 1, ci = 0.95, ...)
## S3 method for class 'dbekka'
predict(object, n.ahead = 1, ci = 0.95, ...)
## S3 method for class 'sbekk'
predict(object, n.ahead = 1, ci = 0.95, ...)
## S3 method for class 'sbekka'
predict(object, n.ahead = 1, ci = 0.95, ...)
Arguments
object |
A fitted bekk model of class "bekkFit" from the bekk_fit function |
n.ahead |
Number of periods to forecast conditional volatility. Default is a one-period ahead forecast. |
ci |
Floating point in [0,1] defining the niveau for confidence bands of the conditional volatility forecast. Default is 95 per cent niveau confidence bands. |
... |
Further parameters to be passed on to the function. |
Value
Returns a S3 class "bekkForecast" object containing the conditional volatility forecasts and respective confindence bands.
Examples
#'
data(StocksBonds)
obj_spec <- bekk_spec()
x1 <- bekk_fit(obj_spec, StocksBonds, QML_t_ratios = FALSE, max_iter = 50, crit = 1e-9)
x2 <- predict(x1, n.ahead = 1)
[Package BEKKs version 1.4.4 Index]