traceplot {BDgraph} | R Documentation |
Trace plot of graph size
Description
Trace plot for graph size for the objects of S3
class "bdgraph
", from function bdgraph
.
It is a tool for monitoring the convergence of the sampling algorithms, BDMCMC and RJMCMC.
Usage
traceplot ( bdgraph.obj, acf = FALSE, pacf = FALSE, main = NULL, ... )
Arguments
bdgraph.obj |
object of |
acf |
visualize the autocorrelation functions for graph size. |
pacf |
visualize the partial autocorrelations for graph size. |
main |
graphical parameter (see plot). |
... |
system reserved (no specific usage). |
Author(s)
Reza Mohammadi a.mohammadi@uva.nl and Ernst Wit
References
Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R
Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, doi:10.18637/jss.v089.i03
Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, doi:10.1214/14-BA889
Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of Applied Statistics, 12(2):815-845, doi:10.1214/18-AOAS1164
Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, doi:10.1111/rssc.12171
Mohammadi, A. and Dobra, A. (2017). The R
Package BDgraph for Bayesian Structure Learning in Graphical Models, ISBA Bulletin, 24(4):11-16
See Also
plotcoda
, bdgraph
, bdgraph.mpl
Examples
## Not run:
# Generating multivariate normal data from a 'random' graph
data.sim <- bdgraph.sim( n = 50, p = 6, size = 7, vis = TRUE )
bdgraph.obj <- bdgraph( data = data.sim, iter = 10000, burnin = 0, save = TRUE )
traceplot( bdgraph.obj )
traceplot( bdgraph.obj, acf = TRUE, pacf = TRUE )
## End(Not run)