plotroc {BDgraph} | R Documentation |
ROC plot
Description
Draws the receiver operating characteristic (ROC) curve according to the true graph structure for object of S3
class "bdgraph
", from function bdgraph
.
Usage
plotroc( pred, actual, cut = 200, smooth = FALSE, calibrate = TRUE,
linetype = NULL, color = NULL, size = 1, main = "ROC Curve",
xlab = "False Postive Rate", ylab = "True Postive Rate",
legend = TRUE, legend.size = 17, legend.position = c( 0.7, 0.3 ),
labels = NULL, auc = TRUE, theme = ggplot2::theme_minimal() )
Arguments
pred |
upper triangular matrix corresponding to the estimated posterior probabilities for all possible links.
It can be an object with |
actual |
adjacency matrix corresponding to the true graph structure in which |
cut |
number of cut points. |
smooth |
logical: for smoothing the ROC curve. |
calibrate |
If |
linetype |
specification for the default plotting line type. |
color |
specification for the default plotting color. |
size |
specification for the default plotting line size. |
main |
overall title for the plot. |
xlab |
title for the x axis. |
ylab |
title for the y axis. |
legend |
logical: for adding legend to the ROC plot. |
legend.size |
title for the x axis. |
legend.position |
title for the y axis. |
labels |
for legends of the legend to the ROC plot. |
auc |
logical: to report AUC with legend. |
theme |
theme for the plot from the function |
Author(s)
Reza Mohammadi a.mohammadi@uva.nl; Lucas Vogels l.f.o.vogels@uva.nl
References
Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R
Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, doi:10.18637/jss.v089.i03
Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, doi:10.1214/14-BA889
Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, doi:10.1080/01621459.2021.1996377
See Also
roc
, pROC::plot.roc()
, pROC::auc()
, bdgraph
, bdgraph.mpl
, compare
Examples
## Not run:
# To generate multivariate normal data from a 'random' graph
data.sim <- bdgraph.sim( n = 30, p = 6, size = 7, vis = TRUE )
# To Run sampling algorithm
bdgraph.obj <- bdgraph( data = data.sim, iter = 10000 )
# To compare the results
plotroc( bdgraph.ob2j, data.sim )
# To compare the results based on CGGMs approach
bdgraph.obj2 <- bdgraph( data = data.sim, method = "gcgm", iter = 10000 )
# To Compare the resultss
plotroc( list( bdgraph.obj, bdgraph.obj2 ), data.sim, legend = FALSE )
## End(Not run)