Discrete Weibull {BDgraph} | R Documentation |
The Discrete Weibull Distribution (Type 1)
Description
Density, distribution function, quantile function and random generation for the discrete Weibull distribution (type I) with parameters q
and \beta
.
Usage
ddweibull( x, q = exp( -1 ), beta = 1, zero = TRUE )
pdweibull( x, q = exp( -1 ), beta = 1, zero = TRUE )
qdweibull( p, q = exp( -1 ), beta = 1, zero = TRUE )
rdweibull( n, q = exp( -1 ), beta = 1, zero = TRUE )
Arguments
x |
vector of quantiles. |
p |
vector of probabilities. |
q , beta |
shape and scale parameters, the latter defaulting to 1. |
zero |
logical; if |
n |
number of observations. If |
Details
The discrete Weibull distribution has density given by
f(x) = q^{x^\beta} - q^{(x+1)^\beta}, x = 0, 1, 2, \ldots
For the case zero
= FALSE
:
f(x) = q^{(x-1)^\beta} - q^{x^\beta}, x = 1, 2, \ldots
Cumulative distribution function
F(x) = 1-q^{(x+1)^\beta}
For the case zero
= FALSE
, x+1
should replaced by x
.
Value
ddweibull
gives the density, pdweibull
gives the distribution function, qdweibull
gives the quantile function, and rdweibull
generates random values.
Author(s)
Reza Mohammadi a.mohammadi@uva.nl, Pariya Behrouzi, Veronica Vinciotti
References
Nakagawa, T. and Osaki, S. (1975). The Discrete Weibull Distribution. IEEE Transactions on Reliability, R-24, 300-301, doi:10.1109/TR.1975.5214915
See Also
Examples
n = 1000
q = 0.4
beta = 0.8
set.seed( 7 )
rdw = rdweibull( n = n, q = q, beta = beta )
plot( prop.table( table( rdw ) ), type = "h", col = "gray50" )
x = 0:max( rdw )
lines( x, ddweibull( x = x, q = q, beta = beta ), type = "o", col = "blue", lwd = 2 )
hist( pdweibull( x = rdw, q = q, beta = beta ) )
plot( ecdf( rdw ) )
lines( x, pdweibull( x, q = q, beta = beta ), col = "blue", lwd = 2, type = "s" )