auc {BDgraph} | R Documentation |
Compute the area under the ROC curve
Description
This function computes the numeric value of area under the ROC curve (AUC) specifically for graph structure learning.
Usage
auc( pred, actual, cut = 200, calibrate = TRUE )
Arguments
pred |
adjacency matrix corresponding to an estimated graph.
It can be an object with |
actual |
adjacency matrix corresponding to the actual graph structure in which |
cut |
number of cut points. |
calibrate |
If |
Value
The numeric AUC value
Author(s)
Reza Mohammadi a.mohammadi@uva.nl; Lucas Vogels l.f.o.vogels@uva.nl
References
Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874, doi:10.1016/j.patrec.2005.10.010
Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77, doi:10.1186/1471-2105-12-77.
See Also
plotroc
, pROC::plot.roc()
, pROC::auc()
, pROC::print.roc()
, bdgraph
, bdgraph.mpl
, compare
Examples
## Not run:
set.seed( 5 )
# Generating multivariate normal data from a 'scale-free' graph
data.sim = bdgraph.sim( n = 200, p = 15, graph = "scale-free", vis = TRUE )
# Running BDMCMC algorithm
sample.bdmcmc = bdgraph( data = data.sim, algorithm = "bdmcmc", iter = 10000 )
BDgraph::auc( pred = sample.bdmcmc, actual = data.sim, calibrate = TRUE )
## End(Not run)