BCgee {BCgee} | R Documentation |
Function to obtain bias-corrected estimates for regression coefficients of a marginal model estimated with generalized estimating equations.
Description
The function takes as an input an object of class gee
and produces an object of class BCgee
which contains the bias-corrected estimates of regression coefficients and further quantities; see details
.
Usage
BCgee(fit)
Arguments
fit |
A fitted model from |
Details
The function computes bias-corrected estimates of regression coefficients by using quantities in the supplied object of class gee
. The output is an object of class BCgee
which has the same structure of an object of class gee
. The output of the two classes differ because quantities included in the object of class BCgee
are computed with the bias-corrected estimates.
Methods print and summary are available for objects of class BCgee
.
Author(s)
Lunardon, N. nicola.lunardon@unimib.it
References
Lunardon, N., Scharfstein, D. (2017). Comment on "Small sample GEE estimation of regression parameters for longitudinal data". Statistics in Medicine, <doi:10.1002/sim.7366>.
See Also
Examples
##Cerebrovascular deficiency example
##see page 153 of Diggle, P., Liang, K.-Y., Zeger, S. (1994). Analysis of longitudinal data.
data(cereb)
if(require(gee)){
fit <- gee(y ~ Period+Drug, id = id, data = cereb, family = binomial(logit),
corstr = "exchangeable")
fitbc <- BCgee(fit)
##compare coefficients, standard errors, and Wald statistics
summary(fit)$coefficients
summary(fitbc)$coefficients
##compare residuals
fit$residuals
fitbc$residuals
}
##Seizure example from geepack
##see page 166 of Diggle, P., Liang, K.-Y., Zeger, S. (1994). Analysis of longitudinal data.
data(seizure)
seiz.l <- reshape(seizure,
varying=list(c("base","y1", "y2", "y3", "y4")),
v.names="y", times=0:4, direction="long")
seiz.l <- seiz.l[order(seiz.l$id, seiz.l$time),]
seiz.l$t <- ifelse(seiz.l$time == 0, 8, 2)
seiz.l$x <- ifelse(seiz.l$time == 0, 0, 1)
if(require(gee)){
fit <- gee(y ~ offset(log(t)) + x + trt + x:trt, id = id, data=seiz.l, corstr="exchangeable",
family=poisson(log))
fitbc <- BCgee(fit)
##compare coefficients, standard errors, and Wald statistics
summary(fit)$coefficients
summary(fitbc)$coefficients
##compare residuals
fit$residuals
fitbc$residuals
}