d1:bcbcsfexamples {BCBCSF} | R Documentation |
Examples of fitting models, predicting class labels, evaluating prediction, and analyzing fitting results
Description
These examples demonstrate how to use BCBCSF package. They use
all prior and Markov chain sampling settings by default (except
no_rmc
as noted below). The methods for setting others can be found
from documents for specific functions. However, the default settings may
work well for a wide range of gene expression data.
References
Li, L. (2012), Bias-corrected Hierarchical Bayesian Classification with a Selected Subset of High-dimensional Features, Journal of American Statistical Association,107:497,120-134
See Also
bcbcsf_fitpred
, bcbcsf_pred
,
cross_vld
, eval_pred
,
reload_fit_bcbcsf
, bcbcsf_sumfit
,
bcbcsf_plotsumfit
Examples
##\dontrun{
## load lymphoma microarray data
data (lymphoma)
## select some cases as testing data set
ts <- c (sort(sample (1:42,5)), 43:44, 61:62)
## training data
X_tr <- lymph.X[-ts,]
y_tr <- lymph.y[-ts]
## test data
X_ts <- lymph.X[ts,]
y_ts <- lymph.y[ts]
##########################################################################
######################## training and prediction #########################
##########################################################################
## fitting training data with top features selected by F-statistic
out_fit <- bcbcsf_fitpred (X_tr = X_tr, y_tr = y_tr, nos_fsel = c(20, 50),
no_rmc = 100)
## note 1: if 'X_ts' is given above, prediction is made after fitting
## note 2: no_rmc = 100 is too small, omit it and use the default
## predicting class labels of test cases
out_pred <- bcbcsf_pred (X_ts = X_ts, out_fit = out_fit)
## evaluate prediction given true labels
eval_pred (out_pred = out_pred, y_ts = y_ts)
##########################################################################
####################### visualizing prediction results ###################
##########################################################################
## reload one bcbcsf fit result from hardrive
fit_bcbcsf <- reload_fit_bcbcsf (out_fit$fitfiles[1])
## the fitting result for no_fsel = 50 can be retrieved directly from
## out_fit:
fit_bcbcsf_fsel50 <- out_fit$fit_bcbcsf
## summarize the fitting result
sum_fit <- bcbcsf_sumfit (fit_bcbcsf)
## visualize fitting result
bcbcsf_plotsumfit (sum_fit)
##########################################################################
############################ cross validation ############################
##########################################################################
## doing cross validation with bcbcsf_fitpred on lymphoma data
cv_pred <- cross_vld (
##################### classifier, data, and fold ###################
fitpred_func = bcbcsf_fitpred, X = lymph.X, y = lymph.y, nfold = 2,
################ all other arguments passed classifier ############
nos_fsel = c(20,50), no_rmc = 100 )
## note: no_rmc = 100 is too small, omit it and use the default in practice
## evaluate prediction given true labels
eval_pred (out_pred = cv_pred, y_ts = lymph.y)
## warning: this function is slow if nfold is large; if you have a
## computer cluster, you better parallel the cross validation folds.
##}
[Package BCBCSF version 1.0-1 Index]