BCA1SG_degradation {BCA1SG} | R Documentation |
BCA1SG algorithm for degradation data
Description
This function implements the BCA1SG algorithm on the semiparametric random-effects inverse Gaussian process model for degradation data to solve the ML estimates of the model parameters.
Usage
BCA1SG_degradation(input_data, initial_delta, initial_r, initial_Lambda = function(x){x},
threshold = 1e-05, max_iter = 5000, max_stepsize = 1e+05, xi = 0.3, contraction = 0.5)
Arguments
input_data |
An object of class data.frame. The structure of the data frame must be {subject ID, time of measurement, measurement}.. This data frame cannot contain missing values. See the dataset "liner" for an example. |
initial_delta |
The initial value of the shape parameter of the gamma distributed scale parameter in the random-effects inverse Gaussian process. See Wang and Xu (2010) for details. |
initial_r |
The initial value of the rate parameter of the gamma distributed scale parameter in the random-effects inverse Gaussian process. See Wang and Xu (2010) for details. |
initial_Lambda |
An R function which serves as the initial value of the baseline mean function. |
threshold |
Convergence threshold. The algorithm is terminated when the infinity norm of the difference between successive iterates is less than the convergence threshold. |
max_iter |
Maximum number of iterations allowed. |
max_stepsize |
Maximum stepsize allowed. |
xi |
The xi parameter in the inexact backtracking line search algorithm. See Wang et al. (2020) for details. |
contraction |
The contraction parameter in the inexact backtracking line search algorithm. See Wang et al. (2020) for details. |
Details
Details about the BCA1SG algorithm can be found in Wang et al. (2020), and the details concerning the semiparametric random-effects inverse Gaussian process model can be found in Section 3 of Wang and Xu (2010).
Value
distinct_time |
The set of distinct observation time points. |
est_Lambda |
The estimated baseline mean function at the set of distinct observation time points. |
est_delta |
The estimated shape parameter of the gamma distributed scale parameter in the random-effects inverse Gaussian process. |
est_r |
The estimated rate parameter of the gamma distributed scale parameter in the random-effects inverse Gaussian process. |
iteration |
The number of iterations. |
timecost |
The computational time in seconds. |
Author(s)
Wang Y., Ye Z., and Cao H.
References
Wang Y., Ye, Z.-S., and Cao, H.(2020). On Computation of Semi-Parametric Maximum Likelihood Estimators with Shape Constraints. Submitted.
Wang X. and Xu, D.(2010). An Inverse Gaussian Process Model for Degradation Data. Technometrics, 52(2), 188-197.
Examples
data(liner)
res<-BCA1SG_degradation(liner, initial_delta = 1, initial_r = 1, threshold = 5e-2)
res$est_delta
res$est_r
res$iteration
res$timecost
plot(res$distinct_time,res$est_Lambda,type="s",lwd=3,xlab="time",ylab="Baseline mean function")