BBoptim {BB} | R Documentation |
Large=Scale Nonlinear Optimization - A Wrapper for spg()
Description
A strategy using different Barzilai-Borwein steplengths to optimize a nonlinear objective function subject to box constraints.
Usage
BBoptim(par, fn, gr=NULL, method=c(2,3,1), lower=-Inf, upper=Inf,
project=NULL, projectArgs=NULL,
control=list(), quiet=FALSE, ...)
Arguments
par |
A real vector argument to |
fn |
Nonlinear objective function that is to be optimized. A scalar function that takes a real vector as argument and returns a scalar that is the value of the function at that point (see details). |
gr |
The gradient of the objective function |
method |
A vector of integers specifying which Barzilai-Borwein steplengths should be used in a consecutive manner. The methods will be used in the order specified. |
upper |
An upper bound for box constraints. See |
lower |
An lower bound for box constraints. See |
project |
The projection function that takes a point in $R^n$ and
projects it onto a region that defines the constraints of the problem.
This is a vector-function that takes a real vector as argument and
returns a real vector of the same length.
See |
projectArgs |
list of arguments to |
control |
A list of parameters governing the algorithm behaviour.
This list is the same as that for |
quiet |
logical indicating if messages about convergence success or failure should be suppressed |
... |
arguments passed fn (via the optimization algorithm). |
Details
This wrapper is especially useful in problems where (spg
is likely
to experience convergence difficulties. When spg()
fails, i.e.
when convergence > 0
is obtained, a user might attempt various strategies
to find a local optimizer. The function BBoptim
tries the following
sequential strategy:
Try a different BB steplength. Since the default is
method = 2
fordfsane
, BBoptim wrapper triesmethod = c(2, 3, 1)
.Try a different non-monotonicity parameter
M
for each method, i.e. BBoptim wrapper triesM = c(50, 10)
for each BB steplength.
The argument control
defaults to a list with values
maxit = 1500, M = c(50, 10), ftol=1.e-10, gtol = 1e-05, maxfeval = 10000,
maximize = FALSE, trace = FALSE, triter = 10, eps = 1e-07, checkGrad=NULL
.
It is recommended that checkGrad
be set to FALSE for high-dimensional
problems, after making sure that the gradient is correctly specified. See
spg
for additional details about the default.
If control
is specified as an argument, only values which are different
need to be given in the list. See spg
for more details.
Value
A list with the same elements as returned by spg
. One additional
element returned is cpar
which contains the control parameter settings
used to obtain successful convergence, or to obtain the best solution in
case of failure.
References
R Varadhan and PD Gilbert (2009), BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function, J. Statistical Software, 32:4, http://www.jstatsoft.org/v32/i04/
See Also
BBsolve
,
spg
,
multiStart
optim
grad
Examples
# Use a preset seed so test values are reproducable.
require("setRNG")
old.seed <- setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion",
seed=1234))
rosbkext <- function(x){
# Extended Rosenbrock function
n <- length(x)
j <- 2 * (1:(n/2))
jm1 <- j - 1
sum(100 * (x[j] - x[jm1]^2)^2 + (1 - x[jm1])^2)
}
p0 <- rnorm(50)
spg(par=p0, fn=rosbkext)
BBoptim(par=p0, fn=rosbkext)
# compare the improvement in convergence when bounds are specified
BBoptim(par=p0, fn=rosbkext, lower=0)
# identical to spg() with defaults
BBoptim(par=p0, fn=rosbkext, method=3, control=list(M=10, trace=TRUE))