| predict.criskbart {BART} | R Documentation |
Predicting new observations with a previously fitted BART model
Description
BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have
y = f(x) + \epsilon,
where \epsilon \sim N(0,\sigma^2).
f is the sum of many tree models.
The goal is to have very flexible inference for the uknown
function f.
In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it contributes a small amount to the overall fit.
Usage
## S3 method for class 'criskbart'
predict(object, newdata, newdata2, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)
Arguments
object |
|
newdata |
Matrix of covariates to predict the distribution of |
newdata2 |
Matrix of covariates to predict the distribution of |
mc.cores |
Number of threads to utilize. |
openmp |
Logical value dictating whether OpenMP is utilized for parallel
processing. Of course, this depends on whether OpenMP is available
on your system which, by default, is verified with |
... |
Other arguments which will be passed on to |
Details
BART is an Bayesian MCMC method.
At each MCMC interation, we produce a draw from the joint posterior
(f,\sigma) | (x,y) in the numeric y case
and just f in the binary y case.
Thus, unlike a lot of other modelling methods in R, we do not produce a single model object
from which fits and summaries may be extracted. The output consists of values
f^*(x) (and \sigma^* in the numeric case) where * denotes a particular draw.
The x is either a row from the training data (x.train) or the test data (x.test).
Value
Returns an object of type criskbart with predictions
corresponding to newdata and newdata2.
See Also
crisk.bart, mc.crisk.bart, mc.crisk.pwbart, mc.cores.openmp
Examples
data(transplant)
delta <- (as.numeric(transplant$event)-1)
## recode so that delta=1 is cause of interest; delta=2 otherwise
delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)
times <- pmax(1, ceiling(transplant$futime/7)) ## weeks
##times <- pmax(1, ceiling(transplant$futime/30.5)) ## months
table(times)
typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')
typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)
x.train <- cbind(typeO, typeA, typeB, typeAB)
x.test <- cbind(1, 0, 0, 0)
dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]
## parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works
post <- mc.crisk.bart(x.train=x.train, times=times, delta=delta,
seed=99, mc.cores=2, nskip=5, ndpost=5,
keepevery=1)
pre <- surv.pre.bart(x.train=x.train, x.test=x.test,
times=times, delta=delta)
K <- post$K
pred <- mc.crisk.pwbart(pre$tx.test, pre$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset, post$binaryOffset2)
}
## Not run:
## run one long MCMC chain in one process
## set.seed(99)
## post <- crisk.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)
## in the interest of time, consider speeding it up by parallel processing
## run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.crisk.bart(x.train=x.train,
times=times, delta=delta,
x.test=x.test, seed=99, mc.cores=8)
## check <- mc.crisk.pwbart(post$tx.test, post$tx.test,
## post$treedraws, post$treedraws2,
## post$binaryOffset,
## post$binaryOffset2, mc.cores=8)
check <- predict(post, newdata=post$tx.test, newdata2=post$tx.test2,
mc.cores=8)
print(c(post$surv.test.mean[1], check$surv.test.mean[1],
post$surv.test.mean[1]-check$surv.test.mean[1]), digits=22)
print(all(round(post$surv.test.mean, digits=9)==
round(check$surv.test.mean, digits=9)))
print(c(post$cif.test.mean[1], check$cif.test.mean[1],
post$cif.test.mean[1]-check$cif.test.mean[1]), digits=22)
print(all(round(post$cif.test.mean, digits=9)==
round(check$cif.test.mean, digits=9)))
print(c(post$cif.test2.mean[1], check$cif.test2.mean[1],
post$cif.test2.mean[1]-check$cif.test2.mean[1]), digits=22)
print(all(round(post$cif.test2.mean, digits=9)==
round(check$cif.test2.mean, digits=9)))
## End(Not run)